academicresearchJournals

Vol. 7(5), pp. 266-284, July 2019 DOI: 10.14662/ARJASR2019.091 Copy©right 2019 Author(s) retain the copyright of this article ISSN: 2360-7874 http://www.academicresearchjournals.org/ARJASR/Index.htm

Full Length Research

Academic Research Journal of Agricultural Science and Research

GGE Biplot for Grain Yield and, Estimation of Variance Components and Heritability of Agronomic Traits for Early Maturing Sorghum (*Sorghum bicolor L.* Moench) Genotypes

Chalachew Endalamaw^{*}, Taye Tadesse, Amare Seyoum, Adane Gebreyohannes and Amare Nega

Ethiopian Institute of Agricultural Research (EIAR), Melkassa Agriculture Research Center, P. O. Box 436, Adama, Ethiopia.

* Corresponding author: Chalachew Endalamaw, E-mail: chalachew23@gmail.com

Accepted 31 July 2019

Genotypes are grown in trials across multiple locations and years, known as multi-environment trials (METs). Genetic performance across these locations is measured as genotype by environment interaction (GEI). Combined analyses of variance showed significant differences for genotypes, environments and genotype by environment (GE). The genotypes G54, G76, G52 and G41 were early flowering and high vielding, and possessed other desirable agronomic traits. The highest heritability was recorded for plant height (PHT), days to 50% flowering (DTF) and grain yield (GY). Among the test locations the most discriminating and representative locations were Sheraro and Meisso stations, respectively. The vertex genotypes in this investigation were G74, G28, G64, G19, G16, G22, G5, G30 and G76. G74 is the winning genotype for the mega-environment which consists of Humera in 2015 (15HM), Meisso in 2015 (15MI) and Sheraro in 2016 (16 SH), while G14 is the winning genotype for Erer in 2116 (16ER) and Meisso in 2016 (16MI) mega-environment and G30 winning genotype for the 15SH mega-environment. Genotypes G41, G54 and G76 are stable and high yielding than the commercial sorghum varieties, G90 (Melkam) and G87 (Dekeba); hence, can be selected as the most favorable genotypes. Thus, based on the graphical interpretation, genotypes G54 and G76 followed by G25, G41 and G74 with high mean yield and stability performances can be considered as ideal genotypes. The G76 had higher than average yield in all environments, whilst it had the highest yield in Sheraro. It was concluded that genotype G76 showed the best stable performance in all locations, suggesting that it is a promising breeding material in future breeding programs of sorghum in Ethiopia. The results obtained through the study provide valuable information on understanding GxE interaction, genotypic variation in response to different diverse environments and application of GGE biplot to analyze GxE interaction to sorghum breeding in Ethiopia. The development of varieties with broad adaptation is strongly supported, rather than location-specific varieties.

Key words: Sorghum, Genotype × environment interaction, GGE biplot, stability, ideal testing environment.

Cite this article as: Chalachew E., Taye T., Amare S., Adane G., Amare N (2019). GGE Biplot for Grain Yield and, Estimation of Variance Components and Heritability of Agronomic Traits for Early Maturing Sorghum (Sorghum bicolor L. Moench) Genotypes. Acad. Res. J. Agri. Sci. Res. 7(4): 266-284

INTRODUCTION

Sorghum is a widely adaptable crop though its production has been limited to water and heat-stress areas within subtropics and tropical regions of the world. Sorghum is the main staple food in Ethiopia, ranking fourth after tef, maize, and wheat, both in area coverage, and production (CSA, 2016). The ability of the crop to withstand drought stress with early maturing and give reasonable yields under adverse environmental conditions has secured its importance as a food security crop in arid and semi-arid lowlands (Chalachew et al., 2017). Moisture stress contributes to poor crop performance and low yield. Inadequate, unequally distributed, and unpredictable rainfall are usually experienced in drier parts of Ethiopia. Consequently, sorghum productivity is still far below developed countries due to several production constraints and among which lack of appropriate agronomic production packages are detrimental (EIAR, 2014). The effect of moisture stress on crop yield is dependent on the stage of plant development. Anthesis and grain filling stages appear to be most susceptible. Occurrence of drought at these stages may result in reduced yield and/or complete crop failure (Khanna-Chopra et al., 1988). Although drought stress at the beginning of the growing season (seedling stage) will severely affect plant establishment, plants will recover soon after the rain falls. Moreover, recently the prevalence of drought has increased, and hence, farmers are increasingly growing early maturing sorghum varieties rather than late maturing sorghum landraces. The populations of growers have a habit of to like highyielding and early-maturing sorghums that are less susceptible to moisture stressed. In most cases, this wide-ranging of traits is highly correlated genetically, making their immediate improvement easy (Gasura et al. GEI decreases the association between 2014). phenotype and genotype, and thus decreases responses to selection during breeding. Besides, GE confounds the recommendation of new varieties from MET and identification of the best testing environment (Yan and Kang, 2002).

The objective of this study was to conducted and analyzed genotype x environment interaction (GEI) for yield and other traits in early maturing sorghum genotypes at four locations within Ethiopia during two cropping seasons. Also, GGE biplot analysis for grain yield was applied to determine the superior genotypes with adaptability to diverse environments and the suitable location for selecting genotypes with better performance.

MATERIALS AND METHODS

Description of Study Areas

The experiments were conducted at Sheraro, Miesso and Erer during the cropping season of 2015-2016 (July-November) and in one location (Humera) for one cropping season in 2015. The field experiments were carried out during kiremt season in 2015 to 2016 at Sheraro (14°24'N, 37°56'E, 1006 m elevation), Meisso (9°13'N, 40°45'E, 1400 m elevation), Humera (14° 17' 26N, 36° 36' 29E, 573m elevation) and Erer (8°10'N, 42°15'E,1297 m elevation) in the dry lowland of Ethiopia. The average annual rainfall of Sheraro, Meisso, Humera and Erer were 615, 572, 611 and 500 mm, respectively; whereas the average annual temperature Sheraro, Meisso, Humera and Erer are 26.4°C, 22.8°C, 27.7 °C and 26.5°C, respectively.

Genetic Materials

The 90 experimental genotypes were developed for high yield and early maturing are suitable for either food or biomass yield for animal feed. These sorghum genotypes were selected during the early stages of breeding based on these highly heritable traits. The two genotypes (Melkam and Dekeba) are the released commercial sorghum varieties grown in Ethiopia. The commercial variety Melkam is known for its high yield (5.8 t ha⁻¹) under optimal conditions. The variety Dekeba is suitable for drought areas, where it can maintain a guaranteed yield of about 4.5 t ha⁻¹. (Table 1)

Table 1. Description of the 90 sorghum genotypes evaluated in seven environments during 2015 and 2016 cropping seasons.

No	Genotype	Pedigree	No	Genotype	Pedigree
1	12MW6146	WSV 387 X E-36-1	46	14MWLSDT7145	WSV387/E-36-1

Table 1. Continuation

2	12MW6161	WSV 387 X E-36-1	47	14MWLSDT7157	WSV387/E-36-1
3	12MW6243	WSV 387 X 76T1#23	48	14MWLSDT7176	WSV387/E-36-1
4	12MW6251	WSV 387 X 76T1#23	49	14MWLSDT7177	WSV387/E-36-1
5	12MW6253	WSV 387 X 76T1#23	50	14MWLSDT7191	WSV387/E-36-1
6	12MW6296	WSV 387 X 76T1#23	51	14MWLSDT7193	WSV387/E-36-1
7	12MW6299	WSV 387 X 76T1#23	52	14MWLSDT7196	WSV387/76T1#23
8	12MW6302	WSV 387 X 76T1#23	53	14MWLSDT7201	WSV387/76T1#23
9	12MW6398	LocalBulk(White)/SRN- 39/B-35	54	14MWLSDT7207	WSV387/76T1#23
10	12MW6420	LocalBulk(White)/SRN- 39/E36-1	55	14MWLSDT7209	WSV387/76T1#23
11	12MW6427	LocalBulk(White)/SRN- 39/E36-1	56	14MWLSDT7234	Macia/E-36-1
12	12MW6429	LocalBulk(White)/SRN- 39/E36-1	57	14MWLSDT7238	Macia/E-36-1
13	12MW6437	LocalBulk(White)/SRN- 39/76T1#23	58	14MWLSDT7241	Macia/E-36-1
14	12MW6440	LocalBulk(White)/SRN- 39/76T1#23	59	14MWLSDT7251	Macia/E-36-1
15	12MW6444	LocalBulk(White)/SRN- 39/76T1#23	60	14MWLSDT7253	Macia/E-36-1
16	12MW6447	CR:35:5/ICSV- 1005/76T1#23	61	14MWLSDT7278	Macia/E-36-1
17	12MW6454	CR:35:5/ICSV- 1005/76T1#23	62	14MWLSDT7279	Macia/E-36-1
18	12MW6457	CR:35:5/ICSV- 1005/76T1#23	63	14MWLSDT7308	Teshale/B-35
19	12MW6460	CR:35:5/ICSV- 1005/76T1#23	64	14MWLSDT7310	Teshale/B-35

Table 1	. Continuation				
20	12MW6467	IESV92084/E36-1	65	14MWLSDT7311	Teshale/B-35
21	12MW6469	IESV92084/E36-1	66	14MWLSDT7322	SDSL2690-2/76T1#23
22	12MW6471	IESV92084/E36-1	67	14MWLSDT7324	SDSL2690-2/76T1#23
23	12MW6474	IESV92084/E36-1	68	14MWLSDT7325	SDSL2690-2/76T1#23
24	13MWF6#6035	2001 MS 7007 X SRN- 39	69	14MWLSDT7329	SDSL2690-2/76T1#23
25	13MWF6#6037	2001 MS 7007 X SRN- 39	70	14MWLSDT7332	SDSL2690-2/76T1#23
26	13MWF6#6045	2001 MS 7007 X Framida	71	14MWLSDT7354	MR812/76T1#23
27	13MWF6#6077	ICSR 24010 X Brihan	72	14MWLSDT7356	MR812/76T1#23
28	14MWLSDT7026	WSV387/76T1#23	73	14MWLSDT7362	2005MI5060/B-35
29	14MWLSDT7029	WSV387/76T1#23	74	14MWLSDT7364	2005MI5060/B-35
30	14MWLSDT7031	WSV387/76T1#23	75	14MWLSDT7388	WSV387/76T1#23
31	14MWLSDT7033	WSV387/76T1#23	76	14MWLSDT7395	MR812/76T1#23
32	14MWLSDT7034	WSV387/76T1#23	77	14MWLSDT7400	WSV387/76T1#23
33	14MWLSDT7035	WSV387/76T1#23	78	14MWLSDT7401	WSV387/76T1#23
34	14MWLSDT7036	WSV387/76T1#23	79	14MWLSDT7402	WSV387/76T1#23
35	14MWLSDT7040	WSV387/76T1#23	80	14MWLSDT7405	Macia/76T1#23
36	14MWLSDT7042	WSV387/76T1#23	81	14MWLSDT7410	ICSR24010/B-35
37	14MWLSDT7060	Macia/76T1#23	82	14MWLSDT7413	WSV387/E-36-1
38	14MWLSDT7073	SDSL2690-2/76T1#23	83	14MWLSDT7425	MR812/B-35
39	14MWLSDT7074	SDSL2690-2/76T1#23	84	2005MI5064	WSV387/P9404
40	14MWLSDT7098	MR812/76T1#23	85	2005MI5065	WSV387/P9405

41	14MWLSDT7100	MR812/76T1#23	86	2005MI5069	M36121/P9402
42	14MWLSDT7114	2005MI5060/E-36-1	87	Dekeba	ICSR24004
43	14MWLSDT7115	ICSR24010/B_35	88	ETSC300001	Teshale/B35//Teshale
44	14MWLSDT7129	ICSR24010/E-36-1	89	ETSC300002	Teshale/E36-1//Teshale
45	14MWLSDT7138	WSV387/E-36-1	90	Melkam	WSV387

Experimental Design and Crop Management

The 90 sorghum genotypes were planted in Randomized Complete Block Design (RCBD) in row column arrangement with two replications. A plot consisted of three rows of 5 m length and inter-row spacing of 0.75 m. The sorghum genotypes were planted at the rate of 10 kg ha⁻¹ (88,888 plants ha⁻¹). Phosphorus and nitrogen fertilizers were applied at the recommended rates of 100 kg-ha⁻¹ and 50 kg-ha⁻¹ in the form of diammonium phosphate (DAP) and Urea, respectively. The DAP was applied during planting in the seed furrow. All plots were top-dressed with Urea when the plants were 30 cm tall. The experiments were conducted in rain fed seasons in all tested sites. Weeds were controlled using hand weeding.

Data Collection

Data were collected on days to 50% flowering, plant height, days to physiological maturity and grain yield. Plant height was measured in centimeters from the base of the plant up to the last flag leaf. Days to 50% flowering were recorded from the date at which 50% of plants in the plot give flower. Days to physiological maturity were recorded from the date of planting until the formation of the black layer on the sorghum grain. Grain yield was measured in grams per plot and then converted to kilogram per hectare and 1000 kernel weights (TKW) (g) were recorded as an average weight of one thousand counted kernels obtained from a composite grain sample harvested from a plot at base moisture (12.5%) adjustment in quantity due to a change in moisture content (Schulz *et al.*, 1995).

Data Analyses

GE analysis of variance (ANOVA) was done on grain yield and related agronomic traits using a mixed model (where genotypes and years were fixed while locations, replications, blocks and error were random) in Genstat software version13 (Genstat, 2010). The following model for the combined ANOVA was used:

where $Y_{ijkm(l)}$ is the yield of the *i*th genotype in the *j*th location and the *k*th year in the *m*th block within the *l*th replication, μ is the grand mean $r_1 (pt)_{jk}$ is the effect of the *l*th replication within locations and years, $b_m(ptr)_{jkl}$ is the effect of the *m*th block within the *l*th replication that is also within locations and years, g_i , p_j and t_k are the main effects of the genotype, locations and years, $(gp)_{ij}$, $(gt)_{ik}$, $(pt)_{jk}$ are the first order interactions and $(gpt)_{ijk}$ is the second order interaction, and finally $e_{ijkm(l)}$ is the pooled error term. The terms $i = 1, 2, 3 \dots 90$; j = 1, 2, 3, 4; k = 1, 2; l = 1, 2, 3 and m = 1, 2, 3.

The suitable F-test for a mixed model that involves fixed genotypes and years, and location comparison biplot for classifying the most discriminating and representative locations were produced using the suitable SVP methods (Yan and Kang, 2002).

The statement used for the combined trials is that the effect of random interactions sums to zero across each level of a fixed factor (Moore and Dixon 2014). The mean squares for genotypes, environments and GE were tested compared to the pooled error mean square, while locations, years and locations×years were tested compared to the mean square of replications within locations and years (McIntosh, 1983).

RESULTS AND DISCUSIONS

Combined ANOVA

The combined analysis of variance (ANOVA) for all traits was showed significant differences (P < 0.01) for environments, genotypes and genotypes x environments interaction (Table 2).

The results of analysis of variance for the effects of G,

E and their interactions G x E, selected sorghum agronomic traits pooled across environments are presented in Table 2. Mean of squares of all the characters study showed highly significant difference (P < 0.01) among the tested sorghum genotypes and environments. This study showed the sorghum genotypes were significantly more affected by interactions.

Table 2. Mean square values of grain yield and related traits of sorghum genotypes, environments and interaction tested.

Source	DF	DTF	PHT	TSW	GY
Genotype(G)	89	60.15**	3692.71**	29.21**	2029001**
Environment(E)	6	11747.34**	251805.55**	9318.06**	69887520**
Replication/E	7	79.36**	1614.05**	27.86ns	2925900**
G*E	534	38.03**	1013.42**	24.91**	678796**
Residuals		8.82	412.74	17.73	460653

**, *: significant probability at 1 and 5% levels, respectively.

DF= Days to 50% flowering, PHT= Plant height (m), TSW= 1000 seed weight (g), GY= Grain yield (kg ha⁻¹).

Mean performance, Variance Components and Heritability Estimates of Genotypes across the environments

Genotypes significantly varied for all the parameters. The study was shown that 11 genotypes (G29, G39, G40, G42, G52, G54, G69, G71, G72, G77, G85) were found to have higher mean grain yield and earlier flowering time than from the high yielder standard check Melkam in combined environments in Table 3, and this indicate positive relationship between grain yields with days to 50% flowering. These types of genotypes are very important in moisture stressed sorghum growing areas. Hence, there is an opportunity to find genotypes, among the tested entries, that perform better than the existing grain sorghum varieties in moisture stressed areas and/or to use them as parents for hybridization program. The genotypes G9, G12, G16, G17, G19 and G44 had late flowering time and least grain yield among the tested sorghum genotypes, these types of genotypes are not important for drought stressed environments (Table 3).

Phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed higher for grain yield (60.98 % and 53.62%, respectively) followed

by plant height (24.69% and 23.27%, respectively). PCV and GCV had lower days to 50% flowering (7.14% and 6.59%, respectively). In general, the PCV values were greater than the GCV values for all characters studied (Table 3). This indicates that high contribution of the environmental variance to the phenotypic variance. According to Deshmukh *et al.* (1986) PCV and GCV values greater than 20% are regarded as high, whereas values less than 10% are considered to be low and values between 10% and 20% to be medium.

Heritability in broad sense was high for plant height, days to 50% flowering and grain yield (88.82%, 85.34% and 77.30%, respectively). According to Singh (2001), if heritability (broad sense) of a character is very high, say 75% or more, selection for such characters could be fairly easy. This may indicate that the genotypes have a broad base genetic background as well as the potential to respond positively to selection for plant height, days to 50% flowering and grain yield. Thus, in the present study, selection of genotypes based on plant height, days to flowering and grain yield traits would be more satisfactory to increase the earliness, biomass and grain yield of sorghum. The GE variation in this study was due to expectable factors (location) and changeable factors (years). In this study, the GE could be attributed to diverse factors like soil types, rainfall patterns, and temperatures. The economical option is to develop sorghum varieties adapted to the target environments. However, the locations have no clearly defined boundaries and farmers have of influencing each other in the choice of variety that is grown, the development of varieties with broad adaptation is strongly supported, rather than location-specific varieties (Chhetri *et al.*, 2012).

Table 3. Combined mean, variance and heritability performance of the 90 genotypes studied for four characters.

iour cha					
Code	Genotype	DTF	PHT	TSW	GY
G1	12MW6146	75.58	147.57	26.85	1828.98
G2	12MW6161	76.50	177.86	25.60	1967.12
G3	12MW6243	76.00	143.79	27.60	1785.23
G4	12MW6251	78.75	184.71	31.31	2133.40
G5	12MW6253	74.58	174.43	29.88	1944.89
G6	12MW6296	77.50	140.57	29.50	1367.29
G7	12MW6299	81.67	145.07	25.90	2014.59
G8	12MW6302	78.08	137.07	28.90	1986.06
G9	12MW6398	78.83	183.43	31.39	937.85
G10	12MW6420	79.92	173.71	30.78	1925.71
G11	12MW6427	79.08	176.64	30.65	1285.82
G12	12MW6429	82.58	190.36	26.40	984.03
G13	12MW6437	77.08	165.57	27.35	1638.18
G14	12MW6440	79.42	194.21	26.45	1899.21
G15	12MW6444	80.25	188.36	26.60	1909.34
G16	12MW6447	80.42	161.14	30.94	655.16
G17	12MW6454	78.42	179.57	28.28	744.00
G18	12MW6457	79.33	177.57	28.10	1248.78
G19	12MW6460	78.33	192.71	28.75	755.31
G20	12MW6467	79.17	180.14	26.85	1054.41
G21	12MW6469	80.50	183.50	33.00	1042.13
G22	12MW6471	79.75	178.00	31.38	969.40
G23	12MW6474	78.58	173.43	28.87	1168.06
G24	13MWF6#6035	77.42	159.93	27.40	1980.96
G25	13MWF6#6037	78.00	157.43	25.99	2287.29
G26	13MWF6#6045	75.08	152.07	27.40	1397.03
G27	13MWF6#6077	76.92	148.00	25.90	1657.67
G28	14MWLSDT7026	74.83	176.79	28.90	1977.01
G29	14MWLSDT7029	74.00	169.36	29.65	1811.89
G30	14MWLSDT7031	75.30	174.86	30.95	2121.79
G31	14MWLSDT7033	76.33	170.21	28.45	1870.76
G32	14MWLSDT7034	78.25	182.14	27.70	1915.66
G33	14MWLSDT7035	77.42	184.50	29.28	1700.44
G34	14MWLSDT7036	75.33	172.07	31.11	1871.31
G35	14MWLSDT7040	76.33	178.29	28.35	1523.32
G36	14MWLSDT7042	75.00	167.79	27.05	1603.37
G37	14MWLSDT7060	75.42	144.36	27.40	1834.83
G38	14MWLSDT7073	76.50	187.29	26.15	1400.64
G39	14MWLSDT7074	72.33	168.00	29.75	1802.05
G40	14MWLSDT7098	73.58	171.64	29.00	1705.31
G41	14MWLSDT7100	74.58	187.21	29.00	2176.44
G42	14MWLSDT7114	72.08	162.50	35.44	2008.02
G43	14MWLSDT7115	76.33	158.36	28.30	1597.78
G44	14MWLSDT7129	81.42	201.21	29.50	928.61
G45	14MWLSDT7138	76.67	160.79	30.38	1954.28

Table 3.	Continuation				
G46	14MWLSDT7145	79.67	187.57	28.44	1437.06
G47	14MWLSDT7157	78.00	190.57	29.25	1663.86
G48	14MWLSDT7176	78.08	216.86	30.33	1871.72
G49	14MWLSDT7177	75.42	177.00	31.44	1690.28
G50	14MWLSDT7191	76.60	162.50	29.50	1204.47
G51	14MWLSDT7193	75.00	165.00	29.75	1909.66
G52	14MWLSDT7196	71.75	142.71	27.40	2167.01
G53	14MWLSDT7201	79.08	200.71	27.40	1768.61
G54	14MWLSDT7207	74.17	182.64	28.45	2264.52
G55	14MWLSDT7209	75.42	170.50	29.95	1323.62
G56	14MWLSDT7234	79.75	165.29	28.28	1806.94
G57	14MWLSDT7238	78.17	177.86	31.71	1587.88
G58	14MWLSDT7241	76.58	169.64	30.19	1326.31
G59	14MWLSDT7251	78.00	180.86	28.50	1552.97
G60	14MWLSDT7253	79.50	180.43	29.85	1028.98
G61	14MWLSDT7278	74.75	162.64	30.80	1852.47
G62	14MWLSDT7279	75.33	191.93	28.80	1467.09
G63	14MWLSDT7308	76.50	193.00	29.80	1393.81
G64	14MWLSDT7310	78.08	174.07	29.70	1309.35
G65	14MWLSDT7311	79.08	193.21	29.00	1615.31
G66	14MWLSDT7322	74.58	184.93	27.50	1699.55
G67	14MWLSDT7324	76.08	206.00	28.55	2139.81
G68	14MWLSDT7325	77.92	192.50	29.00	1609.99
G69	14MWLSDT7329	73.92	187.07	29.25	1995.31
G70	14MWLSDT7332	76.25	175.29	31.50	1994.73
G71	14MWLSDT7354	73.42	150.79	28.35	1951.96
G72	14MWLSDT7356	73.20	162.43	25.65	1812.87
G73	14MWLSDT7362	77.42	157.50	29.40	1415.09
G74	14MWLSDT7364	78.00	184.43	30.45	2247.20
G/5	14MWLSD1/388	//.6/	1/6.21	30.35	1/46.69
G76	14MWLSD17395	75.58	176.64	30.85	2351.44
G77	14MWLSD17400	73.33	178.21	30.05	1696.77
G/8	14MWLSD17401	/5.1/	181.36	30.65	1921.15
G/9	14MWLSD17402	74.92	202.93	28.85	1122.46
G80	14MWLSD17405	/5./5	202.21	29.10	1780.35
681	14MWLSD17410	77.50	159.50	29.00	1784.48
G82	14MWLSD17413	79.92	156.57	35.45	1791.30
G83	141VIVLSD17425	75.67	1/9./9	28.00	1044.80
G84	20051VI15064	79.08	180.07	30.90	1899.95
	20051VI15065	74.42	103.37	29.70	1014.07
G00 G97	2003WI3069	70.17	1/7.30	31.00	1007.20
G07 G88	ETSC300001	72.00	175 36	27.10	1407.20
C80	ETSC300001	76.07	187.00	20.90	1045 30
G90	Melkam	74 50	149 79	30.65	1485.05
<u>usu</u>	Meinann	74.30	174 07	<u> </u>	1651 64
	LSD(5%)	2 41	15.08	3 78	503 77
	$\sigma^2 \alpha$	25.67	1639.98	8.11	784174 00
	$\sigma^2 p$	30.08	1846.36	16.98	1014500 50
	$\sigma^2 e$	4,41	206.37	8.87	230326.50
	PCV%	7.14	24.69	14.15	60.98
	GCV%	6.59	23.27	9,78	53.62
	H%	85.34	88.82	47.79	77.30

 σ^2 g, σ^2 p, σ^2 e, PCV, GCV and H are variances due to genotype, phenotype and error, phenotypic coefficient of variation, genotypic coefficient of variation and broad sense heritability, respectively. DF= Days to 50% flowering, PHT= Plant height (m), TSW= 1000 seed weight (g), GY= Grain yield (kg ha⁻¹).

Code	Genotype	15ER	15HM	15MI	15SH	16ER	16MI	16SH	Mean
G1	12MW6146	1288.65	1569.33	1934.2	3068.67	730	1765.33	2446.67	1828.98
G2	12MW6161	916	1393.67	1622.4	3146	1100	2235.13	3356.67	1967.12
G3	12MW6243	1314	2125.67	1282.4	1920	1130	2534.53	2190	1785.23
G4	12MW6251	822	1741.67	2110.2	2525.34	1320	2767.93	3646.67	2133.40
G5	12MW6253	504	1464	1776.8	4571.34	1200	2724.73	1373.33	1944.89
G6	12MW6296	1746.65	2222	774.47	899.33	1210	1378.6	1340	1367.29
G7	12MW6299	650	1493	1046.8	4330.67	1320	2525	2736.67	2014.59
G8	12MW6302	1016	1038.33	1656	3563.33	1940	1762.07	2926.67	1986.06
G9	12MW6398	128	160.67	596.13	1668.67	1190	1471.47	1350	937.85
G10	12MW6420	1027.35	1416.67	782.53	2874	1890	3052.73	2436.67	1925.71
G11	12MW6427	520	736	1993.07	1519.34	500	2082.33	1650	1285.82
G12	12MW6429	914.7	836.33	553.8	1908	920	1282.07	473.33	984.03
G13	12MW6437	739.3	901	2481.6	1605.34	1560	1886.67	2293.33	1638.18
G14	12MW6440	1414.65	850	1333.93	3913.33	1370	2642.53	1770	1899.21
G15	12MW6444	662	1119.67	1489.47	3511.34	1200	2469.6	2913.33	1909.34
G16	12MW6447	610	97	195.07	1890.67	950	736.73	106.67	655.16
G17	12MW6454	394.65	774.33	261.87	2258.67	510	781.8	226.67	744.00
G18	12MW6457	352.65	949.33	434.27	1776	1100	935.87	3193.33	1248.78
G19	12MW6460	506	325.67	823.87	726.67	910	828.27	1166.67	755.31
G20	12MW6467	817.3	392.67	855.33	2291.34	890	1664.27	470	1054.42
G21	12MW6469	648	0	796.33	992	800	2975.27	1083.33	1042.13
G22	12MW6471	203.35	37.33	331.67	3687.34	230	1069.47	1226.67	969.40
G23	12MW6474	1522	253.07	1341.73	1779.34	1230	1863.6	186.67	1168.06
G24	13MWF6#6035	1061.3	2144.33	958.8	2436.67	1510	2488.93	3266.67	1980.96
G25	13MWF6#6037	1034	1787.67	2100.73	4014	1410	2327.93	3336.67	2287.29
G26	13MWF6#6045	1180.7	1208	872.67	1757.33	1410	1627.2	1723.33	1397.03
G27	13MWF6#6077	564	725	1333.07	2022.67	1580	2332.27	3046.67	1657.67
G28	14MWLSDT7026	846	1753.67	2017.33	1499.33	1130	2456.07	4136.67	1977.01
G29	14MWLSDT7029	1209.3	1419.67	2117.47	2119.34	1250	2570.8	1996.67	1811.89
G30	14MWLSDT7031	978	994	1575.87	4754.67	1510	2576.67	2463.33	2121.79

Table 4. Mean yield (kg ha⁻¹) of 90 early sorghum genotypes tested at seven environments in 2015 and 2016.

Table	4. Continuation								
G31	14MWLSDT7033	1052	1532.33	1565.8	3019.33	1590	2412.53	1923.33	1870.76
G32	14MWLSDT7034	1601.3	1044.77	1767.93	2976.67	920	2712.27	2386.67	1915.66
G33	14MWLSDT7035	991.3	339	2076.8	2880.67	590	1985.33	3040	1700.44
G34	14MWLSDT7036	948	1373.33	2239.53	2530.67	1070	2541	2396.67	1871.31
G35	14MWLSDT7040	650	867.33	2393.33	1167.34	1500	2331.93	1753.33	1523.32
G36	14MWLSDT7042	932.65	779.33	1558.53	1294	1460	2195.73	3003.33	1603.37
G37	14MWLSDT7060	890	1319	2316.93	2018.67	1330	3022.53	1946.67	1834.83
G38	14MWLSDT7073	864.65	1158.67	1837.07	1837.34	790	1523.4	1793.33	1400.64
G39	14MWLSDT7074	830.65	1807.67	1488.67	2497.33	1210	2406.73	2373.33	1802.05
G40	14MWLSDT7098	873.3	1334.67	1727.6	1445.34	1320	2092.93	3143.33	1705.31
G41	14MWLSDT7100	847.35	1943	1284.07	3374.67	1830	2329.33	3626.67	2176.44
G42	14MWLSDT7114	1674	1148.67	1510.6	2461.34	1110	2648.2	3503.33	2008.02
G43	14MWLSDT7115	151.3	1069.33	956.8	1888.67	1750	2445	2923.33	1597.78
G44	14MWLSDT7129	876.65	791.33	967.2	800.67	1420	1194.4	450	928.61
G45	14MWLSDT7138	1048	1166	1891.6	3850.67	1210	2870.33	1643.33	1954.28
G46	14MWLSDT7145	1572.65	947.33	1191.73	1255.34	800	2012.4	2280	1437.06
G47	14MWLSDT7157	803.3	1559.33	1290.13	2638	1180	2579.6	1596.67	1663.86
G48	14MWLSDT7176	1398.7	564.67	1992.67	2821.34	1710	1994.67	2620	1871.72
G49	14MWLSDT7177	866.7	1567.67	2240.27	1694	1320	2243.33	1900	1690.28
G50	14MWLSDT7191	584.65	711	166.87	1996.67	1400	1452.13	2120	1204.47
G51	14MWLSDT7193	854.65	988.67	1363.4	3717.34	1400	2150.2	2893.33	1909.66
G52	14MWLSDT7196	1056.65	2102	1754.4	2003.34	1500	2866	3886.67	2167.01
G53	14MWLSDT7201	726	1426.67	1133.27	3062	1210	3392.33	1430	1768.61
G54	14MWLSDT7207	1376	918.67	1974.47	3696	1780	2303.13	3803.33	2264.51
G55	14MWLSDT7209	310.65	1243.33	1197.87	1794	1480	2196.13	1043.33	1323.62
G56	14MWLSDT7234	788	299.33	1628.67	2966.67	1720	3112.6	2133.33	1806.94
G57	14MWLSDT7238	140	1583.33	1748.73	2076	900	2443.73	2223.33	1587.87
G58	14MWLSDT7241	949.3	361.33	713.2	2309.34	1850	2604.33	496.67	1326.31
G59	14MWLSDT7251	618	838.67	1856.2	2582	1810	1742.6	1423.33	1552.97
G60	14MWLSDT7253	1009.35	780.33	1019.07	1050.67	660	1646.8	1036.67	1028.98
G61	14MWLSDT7278	1582.7	1455	2080.73	3251.33	640	1984.2	1973.33	1852.47

Table 4. Continuation

Table 4. Continuation

G62	14MWLSDT7279	1079.3	2143.33	909.53	875.34	690	2422.13	2150	1467.09
G63	14MWLSDT7308	640.7	456.67	797.47	2578	710	2587.2	1986.67	1393.82
G64	14MWLSDT7310	563.35	560.67	2182.8	641.34	610	2094	2513.33	1309.36
G65	14MWLSDT7311	1240	547	538.4	3840	880	1638.47	2623.33	1615.31
G66	14MWLSDT7322	500	773.67	1926.6	3607.33	1180	2789.27	1120	1699.55
G67	14MWLSDT7324	1652	1225.67	2328	2215.34	2500	2737.67	2320	2139.81
G68	14MWLSDT7325	408	817	1906.67	2173.34	830	2528.27	2606.67	1609.99
G69	14MWLSDT7329	1214	1560	1232.87	2799.34	1290	2781	3090	1995.32
G70	14MWLSDT7332	556	1350.33	1552.8	3770.67	1160	2763.27	2810	1994.72
G71	14MWLSDT7354	1389.35	1477.67	1893.53	2645.33	1510	2191.2	2556.67	1951.96
G72	14MWLSDT7356	1728.65	1374	1825.6	1220.67	1350	2141.2	3050	1812.87
G73	14MWLSDT7362	636	788.33	955.13	2122.67	600	3016.8	1786.67	1415.09
G74	14MWLSDT7364	1410.7	1170	2083.47	2969.33	1500	2450.2	4146.67	2247.20
G75	14MWLSDT7388	1852	1083	2000.67	2616	740	2458.47	1476.67	1746.69
G76	14MWLSDT7395	1506.65	1173.33	2185.87	3917.34	1490	2396.87	3790	2351.44
G77	14MWLSDT7400	626	1188.67	1822.07	1203.33	1380	2410.67	3246.67	1696.77
G78	14MWLSDT7401	1306.65	1701.33	2986.13	2893.33	700	2393.93	1466.67	1921.15
G79	14MWLSDT7402	822.65	406.67	555.73	2571.33	890	1480.87	1130	1122.46
G80	14MWLSDT7405	1120	1222.33	1514.53	3321.34	1080	2460.93	1743.33	1780.35
G81	14MWLSDT7410	490	1277.33	2198.2	2502.67	1260	2506.47	2256.67	1784.48
G82	14MWLSDT7413	772.7	517	2008.27	2254.67	1100	2933.13	2953.33	1791.30
G83	14MWLSDT7425	732	1046.33	1753.87	1580	1140	1998.07	2563.33	1544.80
G84	2005MI5064	1173.3	641	2083.07	3734	1400	2308.27	1960	1899.95
G85	2005MI5065	853.35	452.67	1645.27	3353.33	1000	2316.13	1683.33	1614.87
G86	2005MI5069	820.65	1570.33	1010.87	3128	1190	2450.53	3040	1887.20
G87	Dekeba	1281.35	1013.33	1186.93	1193.34	960	2142.53	2073.33	1407.26
G88	ETSC 300001	573.3	1164	672.87	1704	370	1777.27	2056.67	1188.30
G89	ETSC 300002	1496.65	1845	1259.93	3360	1110	2016.13	2530	1945.39
G90	Melkam	368	2124.33	947.87	2230	1170	2358.47	1196.67	1485.05
	Mean	925.25	1106.92	1470.54	2455.66a	1191.67	2220.01	2191.41	

15ER= Erer 2015; 15HM= Humera 2015; 15MI= Meisso 2015; 15SH= Sheraro 2015; 16ER= Erer 2016; 16MI= Mieso 2016; 16SH= Sheraro 2016.

Genotype by Environment Interaction for grain yield

The average grain yield performance of sorghum genotypes was showed in 2015 and 2016 cropping season (Figure 1). In 2015 cropping season the terminal drought was happened in the sorghum growing regions in Ethiopia, in this case the sorghum trial was affected by terminal moisture stress in all tested locations and it was likely to had low performance and average grain yield of sorghum genotypes. Notice that the combined average grain yield of sorghum genotypes in 2015 had lower than 2016. This variation was showed due to diverse factors like rainfall patterns and temperatures. The environments in 2015 and 2016 years have a wide difference between their average grain yields of genotypes. A difference in yield of 0.4 t/ha means something different depending on weather conditions, however, it is clear that there was some genotype by environment interaction that means some genotypes did well in some environments but poorly in other environments.

Figure 1. Performance of genotypes over the years.

GGE BIPLOT ANALYSIS OF GXE FOR GRAIN YIELD DATA

Test environment evaluation based on GGE biplots

Although MET data are used for genotype evaluation, they can also be used in environment evaluation. The line passing through the biplot origin is called the average environment coordinate (AEC) (Figure 2), which any test environments are closed to AEC that are more representative environments (Yan and Kang, 2002). 16MS had very short vectors, small angles and closed to AEC that means it is the most representative environment. The environment 16SH and 15SH (Sheraro) had the longest vectors from the biplot origin and they were also more discriminating but 16SH is closest to the ideal environment, therefore, best, whereas 15ER and 16ER (Erer) had very short vectors, small angles and far away from the ideal environment and poorest for selecting cultivars adapted to the whole regions (Figure 2).

Figure 2. The environment-vector view of the GGE biplot to display test environments.

Correlations of tested environments

The concentric circles on the biplot help to visualize the length of the environment vectors, which is relative to the standard deviation within the respective environments and is a measure of the discriminating ability of the environments. Therefore. among the seven environments, 15SH and 16SH (Sheraro) were most discriminating (informative), and 15ER and 16ER (Erer) least discriminating environments (Figure 3). Test environments that are consistently non-discriminating provide little information on the genotypes and, therefore, should not be used as test environments (Yan and Tinker, 2006). Discriminating but non-representative test environments (15SH and 16SH), Sheraro, northern part of Ethiopia is useful for selecting specifically adapted genotypes if the target environments can be divided into mega-environments.

The comparison between two environments is

determined by the length of their vectors and the angle between them (Figure 3). Environment 16SH and 15SH (Sheraro) as shown by a long environmental vector and had almost a right angle between them that showed there is not any correlation. The unrelated correlation between two environments 15SH and 16SH indicated a crossover GE interaction; thus, the changes in ranking order of genotypes form one year to another in the same location, Sheraro, due to the change of environmental factors like rainfall and temperature. However, 16ER and 15ER (Erer, eastern part of Ethiopia) had short environmental vector. This means if the study is carried out for several seasons and same sites continue to be nondiscriminating; it means the locations can be throw down and not to be used as test locations at Erer. Environments are fewer valuable because they bring little discriminating information about the genotypes as reported by Yan and Tinker (2006).

PC1 - 42.67%

$\overset{\times}{+}$	Genotype scores Environment scores Vectors	
	Vectors	

Figure 3. The discrimination view of the GGE biplot.

Genotype evaluation based on GGE biplots

Mega environment pattern of GE interaction (which-won-where)

The polygon view of a biplot provides the best way to imagine the interaction patterns between genotypes and environments and to effectively understand a biplot.

It is drawn by connecting the genotype markers located

furthest from the biplot origin using straight convex hull to form a polygon such that all other genotype markers are contained within the polygon. Environments that fall in different sectors have different best genotypes. The which-won-where biplot showed different winning genotypes in different environments (Gasura *et al.*, 2015). Mega-environment idea needs multi-year data, in this study four mega environments were formed (Figure 4). Thus environments, 15ER, 16ER and 16MI formed one mega environment,15HM and 16SH formed one mega environment, while 15MI formed and 15SH formed single split mega-environment. The engaging genotypes for each segment are those located at the vertex. The vertex genotypes in this investigation were G74, G28, G64, G19, G16, G22, G5, G30 and G76.

Genotypes G74, G4 and G52 were the attractive genotypes for the 15HM and 16SH formed one megaenvironment, and G74 was also the winning genotype for the 15MI mega environment. Genotypes G76, G54, G41 and G25 were the winning genotypes for the 15ER, 16ER and 16MI formed one mega environment, while G30 was the winning genotype for the 15SH formed megaenvironment.

The convex hull is fairness lines between adjacent genotypes on the polygon, which facilitate graphic comparison of them. The equality line between G74 and G28 shows that the G74 was better than G28 in all environments. G52 are located on the convex hull that connects G74 and G28. This means that the three can be ranked G74, G52 and G28 in all the environments (Figure 4). This pattern recommends that the mark environment may contain of four different mega-environments and that dissimilar cultivars should be selected and organized for each. This allows the researcher to have specific and effective explanation to recommend genotypes which are best for that particular environment (Gasura *et al.*, 2015).

Figure 4. GGE biplot analysis showing the mega-environments and their respective hiegh yielding genotypes.

Mean Performance and Stability of the Genotypes

Figure 5 illustrates the graphic evaluation of the comparative performance of tested genotypes in environment 16MI (represents the moderate environment in 2016 at Meisso), which produced high and stable yield among the seven environments. A line was drawn that passed through the biplot's origin and the 16MI marker to make an average environment axis (AEA), and then another line drawn vertical from each genotype toward the AEA. The genotypes were ranked on the basis of their projections onto the AEA, with rank increasing in the direction toward the positive end (Yan and Kang, 2002).

Genotypes should be evaluated on both mean performance and stability across environments. The average environment coordination (AEC) view of the GGE biplot origin (Figure 5). Lines vertical to average environment axis (AEA) measures the stability of genotypes in either direction. Genotypes with smallest vertical line and close to AEC are called stable genotype. In this study, the graph shows that G41, G25, G54, G74 and G76 had the highest mean yield, whereas G36, G66 and G85 gave a mean yield almost comparable to the grand mean and; G16, G17, G19 and G44 gave the lowest mean yield. Stability and high performance make a candidate the best genotype (Mare et al., 2017). In this biplot, G41, G2, G33 and G48 were most stable with the higher yield performances than the overall mean, whereas G73, G50, G9 and G55 were also most stable with the lower mean yield performances than the overall mean, as they were located almost onto the AEA, indicating that their ranks were highly consistent across environments. Genotypes G41, G54 and G76 are stable and high yielding; hence, can be selected as the most favorable genotypes. Genotypes were the best or the poorest genotypes in some or all of the environments since they had the greatest distance from the origin as reported by Yan and Kang (2002). These three genotypes vielded higher and were more stable than the commercial sorghum varieties, G90 (Melkam) and G87 (Dekeba). Based on their stability and high yield, these three genotypes were outstanding in the common of the environments. Such genotypes were showed stability and best yield performance in high yield environments, which was as reported by Finlay and Wilkinson (1963). However, G5, G28, G30, G52, G72 and G77 are the most unstable however genotypes had above mean yield.

Ranking biplot (Total - 67.33%)

Figure 5. GGE for ranking of all genotypes relative to the test environments.

Evaluation of genotypes based on an ideal genotype

An ideal genotypes should have the highest mean performance and be stable. Thus, using the ideal genotype as the center, concentric circles were drawn to help imagine the detachment between each genotype and the ideal genotype (Figure 6). An ideal genotype, which is located at the center of the concentric circles has high mean yield and high stability. Thus, based on the graphical understanding, the G76 and G54 followed by G25, G41 and G74 with high mean yield and stability performances can be considered as ideal genotypes. However, G16, G17, G19 and G44 are the poorest genotypes as their placed in the plot are located away from the concentric circle. The genotypes lying on the right side of the line was drawn vertical that passed through AEA had yield performance greater than the mean and the genotypes on the left side had yields lower than the mean (Rono *et al.*, 2016).

Comparison biplot (Total - 67.33%)

Figure 6. GGE-biplot, which shows the evaluation of genotypes based on an ideal genotype.

Ranking environments based on the highest yielding genotype (G76-14MWLSDT7395)

The specific adaptation of agenotype, to rank the test environments on the comparative performance of a genotype, a line is drawn that passes over the biplot origin and the genotype. This line is called the axis for this genotype, and along it is the ranking of the environments. The axis in Figure 7 was drawn based the test environments based on the comparative performance of G76. This showed that G76 had higher than average yield in all environments, whilst it had the highest yield in 15SH and 16SH (Sheraro in both years).

Figure 7. Ranking environments based on the performance of a genotype

CONCLUSION

The significant GEI for DTF, PHT TSW and GY observed from analysis of variance in this study shows that early sorghum genotypes respond differently when grown in different environmental conditions. Environmental effects, as well as GEI, had strong effect on yield of early maturing sorghum genotypes; it means a breeder faces challenge of selection genotypes for improvement and or release, thus additional testing for genotypes with wider and specific adaptation and locations with good discriminating ability and representativeness were done.

The results from this study indicated that G41, G54 and G76 were stable and high yielding and best genotype across environments whereas environment Sheraro in both years (15SH and 16SH) has excellent potential for grain yield in areas. Environments 15ER and 16ER (Erer) are non-discriminating and least representative test environment which are less useful because they provide little discriminating information about the genotypes. The

genotypes G16, G17, G19 and G44 were poor performance for grain yield to be found outside limits of any environments. It is evident that performance of early maturing sorghum is attributed to both genetic make-up and environment.

ACKNOWLEDGEMENTS

The authors acknowledge the national sorghum coordination program at Melkassa Agricultural Research Center for providing budget. Special thanks also go to the staff of Shire-Mytsebri, Fedis and Humera Agricultural Research Centers in general for their unreserved efforts in trial management and data collection.

ABBREVIATIONS

E, environment; G, genotype; GE, genotype x environment interaction; GGE, genotype main effect plus genotype x environment interaction; MET, multienvironmental trial; PC, principal component.

REFERENCES

- Chhetri N, Chaudhary P, Tiwari PR, Yadaw RB (2012). Institutional and technological innovation: Understanding agricultural adaptation to climate change in Nepal. *Applied Geography*, *33*, 142-150.
- CSA (2016). Agricultural sample survey. Report on area and production of crops, private peasant holdings. Ethiopian Central Statistical Agency. Statistical Bulletin 578.
- Deshmukh SNSN, Basu MS, Reddy PS (1986). Genetic variability, character association and path coefficient analysis of quantitative traits in Viginia bunch varieties of ground nut. Indian J. Agric. Sci. 56:515-518.
- EIAR (Ethiopian Institute of Agricultural Research) (2014). Cop Production Technologies, Addis Ababa.
- Chalachew E, Asfaw A, Hussein A (2017). Correlation and path coefficient analysis of agronomic and quality

traits in a bioenergy crop, sweet sorghum [Sorghum bicolor (L.) Moench]. Afr. J. Biotechnol 16:2189-2200.

- Gasura E, Setimela PS, Souta CM (2015). Evaluation of the performance of sorghum genotypes using GGE biplot. Canadian J. Plant Sci. 95 : 1205-1214.
- Gasura E, Setimela PS, Tarekegne A, Icishahayo D, Edema R, Gibson PT, Okori P (2014). Variability of grain-filling traits in early maturing CIMMYT tropical maize inbred lines. J. Crop Sci. 54: 530-536.
- GenStat (2010). GenStat 13thed. VSN International Ltd., Hemel Hempstead, UK.
- Khanna-Chopra R, Sinha SK (1988). Enhancement of drought-induced senescence by the reproductive sink in fertile lines of wheat and sorghum. Annals of Botany61(6): 649-653.
- Mare M, Manjeru P, Ncub B, Sisito G (2017). GGE biplot analysis of genotypes by environment interaction on Sorghum bicolor L. (Moench) in Zimbabwe. African J. Plant Sci.11: 308-319.
- McIntosh MS(1983). Analysis of Combined Experiments 1. Agronomy Journal 75(1):153-5.
- Moore IS, Jones A, Dixon S (2014). The pursuit of improved running performance: Can changes in cushioning and somatosensory feedback influence running economy and injury risk?. Footwear Sci. 6(1):1-1.
- Rono JK, Cheruiyot EK, Othira JO, Njuguna VW, Macharia JK, Owuoche J, Oyier M, Kange AM (2016). Adaptability and Stability Study of Selected Sweet Sorghum Genotypes for Ethanol Production under Different Environments Using AMMI Analysis and GGE Biplots. Sci. World J. 4060857.
- Schulz KF, Chalmers I, Hayes RJ, Altman DG(1995). Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. Jama 273(5):408-12.
- Singh V (2001). Monograph on Indian subtribe Cassinae (Cesalpiniaceae) Scientific Publisher.
- Yan W, Tinker NA (2006). Biplot analysis of multienvironment trial data: Principles and applications. Canadian Journal Plant Science 86: 623–645.
- Yan W, Tinker NA (2006). Biplot analysis of multienvironment trial data: Principles and applications. Canadian J. Plant Sci. 86: 623–645.