academicresearch Journals

Vol. 3(8), pp. 238-244, August 2015 DOI: 10.14662/ARJASR2015.054 Copy©right 2015 Author(s) retain the copyright of this article ISSN: 2360-7874 http://www.academicresearchjournals.org/ARJASR/Index.htm

Academic Research Journal of Agricultural Science and Research

Full Length Research

Agricultural inputs obtained by CO₂ chemical sequestration in piggery wastewaters

Marieta Ghimpusan¹*, Aurelia Cristina Nechifor¹, Gheorghe Nechifor¹, Ștefan-Ovidiu Dima^{1,2}, Piero Passeri³

¹ University Politehnica from Bucharest, Faculty of Applied Chemistry and Materials' Science, 1-7 Gheorghe POLIZU, 011061 Bucharest, Romania (* maghimpusan@gmail.com). Corresponding author: Marieta Ghimpusan ² National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania. ³ G.O.S.T. Srl, 31 Via Romana, 06081 Assisi (Perugia), Italy

Accepted 13 August 2015

Carbon dioxide sequestration in chemicals with applications in agriculture is one of the active research fields at global scale. The aim of this paper was to study the CO₂ sequestration in piggery wastewater. The obtained products are ammonium carbonate, ammonium bicarbonate, and carbamate, compounds with various agricultural and industrial applications. It was investigated the biological treatment of piggery wastewater for organic carbon and nitrogen removal in a combined anaerobic–aerobic sequestration batch reactor (SBR) system. The wastewater treatment plants are a source of greenhouse gases (GHG) emissions such as CO₂ or nitrous oxide (N₂O). SBR system plant has been proposed as a technology to convert CO₂ and wastewaters into valuable products (hydrogen, methane, organic compounds) by intake of generated gas in the system as a source of reducing power. The laboratory investigation was performed to assess the feasibility of CO₂ absorption and the quantities of Nitrogen-containing compounds decreasing. It was found that by applying this technique, the quantities of organic carbon and nitrogen-containing compounds are significantly reduced. Besides the CO₂ capture and, consequently, the decreasing of GHG amount, the obtained products can find large scale application in agriculture for plant growth, in industry, and even in tissue engineering.

Keywords: carbon dioxide, sequestration, nitrogen, piggery, wastewater.

How to cite this article: Ghimpusan M, Nechifor AC, Nechifor G, Dima S-O, Passeri P (2015). Agricultural inputs obtained by CO2 chemical sequestration in piggery wastewaters. Acad. Res. J. Agri. Sci. Res. 3(8): 238-244.

INTRODUCTION

Livestock is the agriculture branch that is introducing the highest amounts of greenhouse gases (GHG) into the atmosphere, amplifying the global warming, but solutions can emerge right from this problem. The GHGs emissions from agriculture represents 20-35% from the global air pollution, 136 types of gases being found in livestock facilities (Dubeňová et al., 2014; Karandušovská et al., 2011). The two most abundant GHG originating from agriculture are carbon dioxide (CO_2) and nitrous oxide (N_2O) . Carbon dioxide is the main greenhouse gas produced during human activities and its concentration is also increasing because of human intervention through deforestation; the forests are well known natural sinks for removing CO_2 from the atmosphere (NRC, 2010). Nitrous

oxide is a compound which appears only in specific conditions of combined aerobic and anaerobic processes of nitrification and denitrification, and it is related to the nitrogen cycle that starts with the transformation of fertilizers and pig manure (Dubeňová et al., 2014). Recent developments in fertilizing formulations are trying to reduce the emission of GHG without reducing the plant nutrition performances (Neamţu et al., 2015; Neamţu, Popescu, & Dima, 2015; Vaz-Patto et al., 2015).

The use as fertilizing agents of products resulted from CO_2 capture in wastewaters is actively studied and shows promising results. Recently, Bonet-Ruiz et al. (2015) reported the CO_2 absorption in a residual sludge rich in ammonia, having as result a fertilizing aqueous stream. Besides the conversion of two residual streams (sludge and CO_2) in a useful fertilization stream, the reported method assures the saving of the energy usually consumed with the recovery of solvent by absorption.

CO₂ sequestration identifies intensive studies in different domains, all aiming to reduce the CO₂ high amounts that cause global warming, ocean acidification, and destabilization of many ecosystems. Besides reforestation and afforestation, the best and greener ways of CO₂ capture, at the moment there are studied the geologic sequestration, absorption in solvents (like monoethanolamine, water), sequestration in oil, gas field, saline aquifer, coal seam, microbial sequestration, biogenic carbonation, ureolytic calcification, and other (Last & Schmick, 2015; Tang et al., 2014; Mahanty et al., 2015). A tangible example from industry can be the CO_2 sequestration by carbonation of artificial gypsum (Perez-Moreno, 2015). Red gypsum is a waste from the radioactive materials' industry and it was used in the mentioned study as calcium source for CO₂ sequestration as calcium carbonate, the most stable form of carbon storage.

Air contaminants emitted from stored animal wastewater affect human health and the environment and, moreover, wastewater treatment plants (WWTPs) are a source of GHG emissions such as CO₂ and N₂O. Thus, the aim of this paper was to analyze the feasibility of CO₂ absorption and nitrogen decreasing by using the CO₂ gas after a biological treatment of a piggery wastewater in а combined anaerobic-aerobic sequestration batch reactor (SBR) system.

MATERIAL AND METHODS

In this study piggery wastewater with pH of 8.70 – 8.93 was collected from the discharged effluent provided by the anaerobically digestion of the mixture of rich straw and swine manures from "Agricola Le Piagge S.s. di Luigi e Fausto", Spello – Italy. A biological treatment was applied to 1000 ml of wastewater sample in a combined anaerobic–aerobic SBR lab system for three weeks.

Carbon dioxide was supplied using a lab gas pressurized cylinder. The studied wastewater was regenerated every day and was inoculated with lyophilized bacteria Demstep 50P. Monitoring was carried out by regular sampling and analyses of the wastewater inlet and at the exit of the reactor.

To measure ammonium, nitrite, nitrate and chemical oxygen demand (COD) parameters, photochemical commercial test kits were used, like Hach Lange GmbH, Düsseldorf, Germany LCK type and LANGE Xion500 spectrophotometer. Ammonium, nitrite, nitrate, COD, Total Kjeldahl Nitrogen (TKN), were all measured according to APHA "Standard Methods of Water and Wastewater analysis". Dissolved Oxygen (DO) was measured with a portable Hanna Instruments DO-meter. The chemical oxygen demand, representing the amount of oxygen required to chemically oxidize the substances in the wastewater, was measured using UV-Vis spectrophotometer XION 500, Hach Lange with the test kits Dr Lange LCK 014, 114, 314 after 2 h digestion at 148°C. Total Nitrogen, nitrogen ammonia, nitrite, and nitrate were measured using the kit Dr Lange LCK238, LCK303, LCK342, and LCK339 respectively.

Experiments have been performed at lab scale on the installation presented in Figure 1 and the main results are shown in Table 1.

RESULTS AND DISCUSSIONS

It was found that the values of pH, COD and nitrogen are decreasing during the three weeks experiment. The average raw wastewater, effluent characteristics and plant performance during the period of the test are depicted in Figure 2. Applying this method, the undesired nitrites and nitrates are reduced, fact that that recommends this method for the protection of the environment.

Secondly, it can be seen that the average efficiency of COD removal using the CO_2 gas in the system (the last column) is good compared with the case when CO_2 is not used. After the above described treatment, the effluent parameters are decreasing. The measured DO was 2.60 – 2.73 mg/l.

This interesting trend may be attributed to the reaction mechanism between piggery wastewater contained substances and CO_2 . Although the CO_2 absorption mechanism cannot be determined, it still may be expected that one of the main reaction mechanism follows the path: $NH_4^+ \rightarrow NH_3 \rightarrow NH_4HCO_3$.

It is presumed that CO_2 is absorbed by some alkaline substances like the small amount of free NH₃ in the wastewater. The exhaust of free NH₃ will enhance the rate of NH₃ releasing from NH₄⁺–N contained in the wastewater. Consequently, NH₃ released in solution can be used to capture CO_2 to generate ammonium

Figure 1. Lab set-up for the study of CO₂ chemical sequestration in piggery wastewaters.

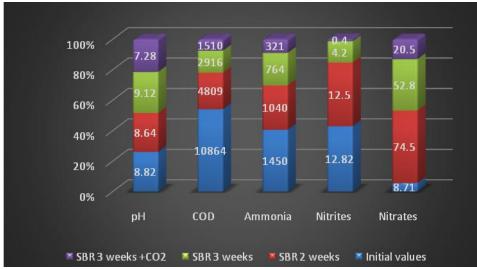


Figure 2. The evolution of parameters' values.

bicarbonate.

For the experimental data was further performed the One Way ANOVA statistical instrument. The Bonferroni's Test was chosen for pair wise multiple mean comparison and Levene's Test for absolute deviations. The results for the statistical analysis are presented in tables 1-3 and in figure 3.

The One Way ANOVA experiment evidenced that at 0.05 significance level, the population means are significantly different. The Bonferroni test takes Sig value

Table 1. Standard deviation and square error of mean for theexperimental data.

Ξ	Descriptive Statis	tics	
	O	01	

		Sample Size	Mean	Standard Deviation	SE of Mean
	pН	4	8.465	0.81443	0.40722
8	COD	4	5024.75	4120.82851	2060.41425
	Ammonia	4	893.75	474.58078	237.29039
	Nitrites	4	7.48	6.18064	3.09032
	Nitrates	4	39.1275	30.0575	15.02875

Table 2. One Way ANOVA

OVEIG	ANC			a nev			1000				
	DF	Sum of S	Squares 1	lean Square	F Value	Prob>F	F				
Model	4	7.5	6474E7	1.89118E7	5.49527	0.0062	28				
Error	15	5.1	6222E7	3.44148E6							
Total	19	1.	2727E8								
Fit Sta			Poot MQ	E Data Moo	n						
R-Squ		Coeff Var	Root MSI								
0.59	439	1.55277	1855.122	47 1194.714	5						
		nparison. ni Test	S								
		nparison. ni Test	S MeanDiff	SEM	tVa	alue	Prob	Alpha	Sig	LCL	UCL
	nferroi					alue .82406	Prob 0.0166	Alpha 0.05	Sig 1	LCL 705.75996	2000
	nferrol	ni Test	MeanDiff	5 1311.7696	58 3		10/02/22	No. Contraction			9326.8100
Bor	Amm	ni Test	MeanDiff 5016.28	5 1311.7690 5 1311.7690	58 3 58 0	.82406	0.0166	0.05	1	705.75996	9326.8100 5195.8100
Bor	Ammon	COD pH conia pH	MeanDiff 5016.28 885.28	5 1311.7690 5 1311.7690 1 1311.7690	58 3 58 0 58 -3	.82406 .67488	0.0166 1	0.05	1	705.75996 -3425.24004	9326.8100 5195.8100 179.5250
Bor	Amm Ammor Nit	COD pH onia pH nia COD	MeanDiff 5016.28 885.28 -413	5 1311.7690 5 1311.7690 1 1311.7690 5 1311.7690	58 3 58 0 58 -3 58 -7.508	.82406 .67488 .14918	0.0166 1 0.06617	0.05 0.05 0.05	1 0 0	705.75996 -3425.24004 -8441.52504	9326.8100 5195.8100 179.5250 4309.5400
Bor	Ammor Ammor Nitrit	ni Test COD pH Ionia pH nia COD trites pH	MeanDiff 5016.28 885.28 -413 -0.98	5 1311.769(5 1311.769(11 1311.769(5 1311.769(5 1311.769(7 1311.769(58 3 58 0 58 -3 58 -7.50 58 -7.50	.82406 .67488 .14918 894E-4	0.0166 1 0.06617 1	0.05 0.05 0.05 0.05	1 0 0 0	705.75996 -3425.24004 -8441.52504 -4311.51004	9326.8100 5195.8100 179.5250 4309.5400 -706.7449
Bor	Ammon Ammon Nitrit Nitrit	COD pH conia pH nia COD trites pH res COD	MeanDiff 5016.28 885.28 -413 -0.98 -5017.2	1311.7690 15 1311.7690 15 1311.7690 11 1311.7690 15 1311.7690 15 1311.7690 16 1311.7690 17 1311.7690 17 1311.7690	58 3 58 0 58 -3 58 -7.501 58 -3 58 -3 58 -3 58 -3	.82406 .67488 .14918 894E-4 .82481	0.0166 1 0.06617 1 0.01657	0.05 0.05 0.05 0.05 0.05 0.05	1 0 0 0	705.75996 -3425.24004 -8441.52504 -4311.51004 -9327.79504	9326.8100 5195.8100 179.5250 4309.5400 -706.7449 3424.2550
Bor	Ammo Ammo Nitrit Nitrit Nitrit Nitrit	COD pH onia pH hia COD trites pH res COD mmonia	MeanDiff 5016.28 885.28 -413 -0.98 -5017.2 -886.2	 1311.769(1311.769(1311.769(1311.769(1311.769(1311.769(1311.769(1311.769(1311.769(58 3 58 0 58 -3 58 -7.503 58 -3 58 -3 58 -0 58 0	.82406 .67488 .14918 894E-4 .82481 .67563	0.0166 1 0.06617 1 0.01657 1	0.05 0.05 0.05 0.05 0.05 0.05	1 0 0 0 1	705.75996 -3425.24004 -8441.52504 -4311.51004 -9327.79504 -5196.79504	UCL 9326.8100 5195.8100 179.5250 4309.5400 -706.7449 3424.2550 4341.1875 -675.0974
Bor	Ammon Ammon Nitrit Nitrit Nitrit Nitrat	COD pH nonia pH nia COD trites pH res COD mmonia rates pH	MeanDiff 5016.28 885.28 -413 -0.98 -5017.2 -886.2 30.662	1311.7690 15 1311.7690 15 1311.7690 15 1311.7690 15 1311.7690 17 1311.7690 17 1311.7690 17 1311.7690 17 1311.7690 15 1311.7690 15 1311.7690 15 1311.7690 15 1311.7690	58 3 58 0 58 -3 58 -7.504 58 -3 58 -0 58 0 58 -3	.82406 .67488 .14918 894E-4 .82481 .67563 .02337	0.0166 1 0.06617 1 0.01657 1 1	0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 0 0 1 0 0	705.75996 -3425.24004 -8441.52504 -4311.51004 -9327.79504 -5196.79504 -4279.86254	9326.8100 5195.8100 179.5250 4309.5400 -706.7449 3424.2550 4341.1875

Sig equals 1 indicates that the means difference is significant at the 0.05 level.

Sig equals 0 indicates that the means difference is not significant at the 0.05 level.

1992 32218

			um of Squares	<i>viations)</i> Mean Square	F Value	Prob>F
	Model	4	2.58747E7	6.46867E6	5.69782	0.0054
	Error	15	1.70293E7	1.13529E6		
	At the 0.05 I	evel, the	population variations	s are significantly dif	ferent.	
P	owers					
P	owers	Alp	ha Sample Si	ze Power		

Table 3. Homogeneity of variance test and the actual power.

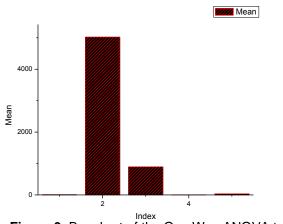


Figure 3. Bar chart of the One Way ANOVA test.

equal to 1 in three cases, all containing COD in their pair: COD-pH, Nitrites-COD, Nitrates-COD, which suggests that these pairs of means are significantly different. The Actual Power value of 0.91 suggests that the probability of rejecting a false statistical null hypothesis is 0.91.

Ramachandran et al. (2006) reported the mechanism for the reaction between CO_2 and primary and tertiary amines and mentioned that a generic chemical reaction has been illustrated by Blauwhoff et al., Versteeg and van Swaaij, Littel et al., and Liao & Li and follows several steps:

 $\begin{array}{l} \text{lonization of water} \\ \text{H}_2 \text{O} & \rightarrow \text{OH}^- + \text{H}^+ \end{array} \tag{1}$

Dissociation of dissolved carbon dioxide through carbonic acid

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{HCO}_3^- + \mathrm{H}^+ \tag{2}$$

Dissociation of bicarbonate
$$HCO_3^- \leftarrow CO_3^{2^-} + H^+$$
 (3)

Formation of bicarbonate

$$CO_2 + OH^- \iff HCO_3^-$$
 (4)

Reaction of CO₂ with nitrogen-containing compounds

$$CO_2 + R_2CH_3N + H_2O \leftarrow R_2CH_3NH^+ + HCO3^-$$
 (5)

$$R_2CH_3N + H^+ \longleftarrow R_2CH_3NH^+$$
(6)

Reaction of CO₂ with primary amine

 $R-NH_2 + CO_2 \longleftarrow H^+ + R-NH-COO^-$ (7)

 $R-NH_2 + H^+ \quad \clubsuit R-NH_3^+ \tag{8}$

 $R-NH-COO^{-} + H2O \iff R-NH_2 + HCO_3^{-} (9)$

It is considered that this mechanism implies the reaction of primary amines RNH_2 with CO_2 to produce a carbamate RNH_2COO^- by the deprotonation of the base RNH_2COO^- . Any base present in the solution may contribute to the deprotonation reaction. The contribution of each base to the overall reaction rate depends on both its concentration and its strength. Here, R refers to $-CH_2-CH_2-OH$ (Ramachandran et al., 2006).

 CO_2 sequestration will continued to be an important research trend, mainly because of the global warming growing concerns. And when the secondary products of CO_2 capture technique have an economical value, that particular technology becomes highly attractive.

CONCLUSIONS

In this paper it was proposed a solution for CO₂ sequestration simultaneously with the production of materials with fertilizing properties and other possible agricultural and industrial applications. A sequestration batch reactor (SBR) system was build in order to investigate the biological treatment of piggery wastewater in a combined anaerobic-aerobic system, followed by CO₂ addition into the reactor in the last step. The experiment lasted three weeks and the obtained products were ammonium carbonate, ammonium bicarbonate, and carbamate. It was found that by applying this technique, the quantities of organic carbon and nitrogen-containing compounds are significantly reduced. The ammonia concentration decreased from 1450 to 321 mg/l, the nitrites concentration decreased from 12.5 to 0.4 mg/l, and the nitrates concentration decreased from 74.5 to 20.5 mg/l. The proposed mechanism under CO₂ influence was: $NH_4^+ \rightarrow NH_3 \rightarrow NH_4HCO_3$. In conclusion, through this technique can be achieved two important objectives: fighting the global warming by decreasing of greenhouse gases through CO₂ secure sequestration, and secondly, valuable products with possible applications in agriculture, food industry, pharmaceutics, plastic industry, and more.

ACKNOWLEDGEMENT

The work has been funded by the Sectorial Operational

Programme Human Resources Development 2007-2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132395.

REFERENCES

- APAT, IRSA CNR, (2004). Metodi analitici per le acque, ISBN 88-448-0083-7,
- Bonet-Ruiz AE, Plesu V, Bonet J, Iancu P, Llorens J (2015). Preliminary technical feasibility analysis of carbon dioxide absorption by ecological residual solvents rich in ammonia to be used in fertigation. Clean Techn Environ Policy. 17:1313–1321
- Cortus EL, Gonyou HW, Lemay SP, Barber EM (2005). Measuring and simulating the urination frequency of grower-finisher pigs. Canad J Anim Sci 85:537-539.
- Dubeňová M, Šima T, Gálik R, Mihina Š, Vagač G, Boďo Š (2014). Reduction of nitrous oxide and carbon dioxide in the pig barn piggery by different ventilation system intensities. Agron Res 12(1):207–214.
- Karandušovská I, Mihina Š, Boďo Š, Reichstädterová T (2011). Produkcia amoniaku a skleníkových plynov v zmodernizovanom objekte ustajnenia dojíc v letom období. Rural buildings 2011: Proceedings of Scientific Works. FE SUA in Nitra. 44–50.
- Last GV, Schmick MT (2015). A review of major nonpower-related carbon dioxide stream compositions. Environ Earth Sci 74:1189–1198
- Mahanty B, Kim S, Kim CG (2015). Dissolved and gaseous inorganic carbon sequestration using a close system cell-free ureolytic calcification process. Environ Earth Sci 73:1473-1477.
- Malika M, Islam R, Karim R, Huda A, Jahiruddin M (2015). Organic and inorganic fertilizers influence the nutrient use efficiency and yield of a rice variety BINA dhan7. Acad. Res. J. Agri. Sci. Res. 3:192-200.
- Neamţu C, Popescu M, Dima ŞO (2015). Leaching and *in vitro* agrochemical screening for new slow release fertilizers containing N, P, Ca, and Mg. Acad. Res. J. Agri. Sci. Res. 3:45-53.
- Neamţu C, Popescu M, Oancea F, Dima ŞO (2015). Synthesis optimization and characterization of microencapsulated NPK slow-release fertilizers. Open Chem. 13(1):813-823.
- Ni JQ, Heber AJ, Sutton AL, Kelly DT (2009). Mechanisms of gas releases from swine wastes. Transactions of ASABE 52:2013-2025.
- NRC (2010). Advancing the Science of Climate Change. National Research Council. The National Academies Press, Washington, DC, USA.
- Olivier JCJ, Janssen-Maenhaut G, Peters JAHW. Trends in global CO₂ emissions; 2012 report. The Hague/Bilthoven: PBL Netherlands Environmental Assessment Agency; 2012. http://dx.doi.org/10.2788/33777

- SM Pérez-Moreno, MJ Gázquez, JP Bolívar, (2015). CO₂ sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments. Chem Eng J 262:737–746.
- Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P (2006). Kinetics of the Absorption of CO_2 into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine. Ind Eng Chem Res 45:2608-2616.
- Tang Y, Yang R, Bian X (2014). A Review of CO₂ Sequestration Projects and Application in China. The Scientific World Journal, Article ID 381854.
- Vaz-Patto MC, Amarowicz R, Aryee ANA, Boye JI, Chung HJ, Martín-Cabrejas MA, Domoney C (2015). Achievements and challenges in improving the nutritional quality of food legumes. Crit Rev Plant Sci. 34:105-143.