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Projections of current and future (SRES A2) climates from the three GCMs (ECHAM5, GFDL CM 2.1 and 
HadCM3) in the Couple Model Intercomparison Project (CMIP3) database assessed by IPCC were 
selected to study the impacts of climate change on paddy rice yields over India. Model projections are 
important way to study the potential impacts of future projected climate change on crop production. 
Such assessments are subjected to a range of uncertainties arising from climate and crop models, 
initial conditions and emissions. On the basis of uncertainties in the impact assessment, this article 
summarizes the sources of uncertainty and methods focusing on processing the uncertainties. Peculiar 
to this exercise is to improve the level of confidence in assessment of climate change impacts on crop 
production. The EPIC crop simulation model regularly failed to simulate viable crop yields in the north-
western states of India due to erroneously low precipitation and high temperatures in the baseline 
climate. Changes in paddy rice yields varied from -49 to 100 % in the future when unprocessed climate 
scenarios were used. However, bias corrected climate data exhibited changes in paddy rice from -75 to 
-15% across major paddy growing states in India. In the elevated CO2 simulations paddy rice yields are 
increasing by 15% to 17. 
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INTRODUCTION 
 
Global climate change has emerged as an important 
environmental challenge due to its potential impacts on 
the biological systems of planet Earth. The average 
surface temperature of the earth has increased during the 
twentieth century by about 0.6°C, and the warmest years 
in the previous century have occurred within the last 
decade. Atmospheric CO2 concentration has risen by 
more than 30% since pre-industrial times, from 
equilibrium levels of about 280 ppm in 1880, to the 

current observed levels of 390 ppm. This increase is the 
direct result of human activities, primarily fossil fuel 
burning, cements production, and modified land-use 
patterns (IPCC, 2007). Current anthropogenic CO2 
emissions into the atmosphere are about 8 GT C year−1, 
with atmospheric levels increasing by almost 0.5% per 
year. If present emission patterns continue in the future, 
atmospheric CO2 will be doubled by the end of the 21

st
 

century relatively to previous values (Vaughan, 2015,  
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Dlugokencky, 2015). Simulations with global climate 
models (GCMs) suggest that the projected increases in 
CO2 will modify the global climate, by causing widespread 
increase of surface air temperatures; by altering 
precipitation patterns and the global hydrologic cycle; and 
by increasing the frequency of severe weather events, 
such as drought spells and flooding (IPCC, 1996). Due to 
uncertainties in future emissions and concentrations of 
greenhouse gases, their net warming effect in the 
atmosphere, and the response of the climate system, 
estimates of future temperature change are uncertain. 
The IPCC made the following projections of future 
warming (IPCC, 2014): The average surface temperature 
of the Earth is likely to increase by 1.1-6.4°C by the end 
of the 21

st
 century, relative to 1980-1990, with a best 

estimate of 1.8-4.0°C. The average rate of warming over 
each inhabited continent is very likely to be at least twice 
as large as that experienced during the 20

th
 century.  

The Indian summer and winter monsoons constitute the 
most spectacular manifestation of regional anomalies in 
the general circulation of atmosphere resulting from land-
sea contrasts and geographical features (Parthasarathy 
et al., 1993, Annamalai and Hamilton, 2006,Kripalani et 
al., 2007). The All India Summer monsoon (also known 
as the southwest monsoon (June to September)) is one 
of the major climate systems on the Earth influencing 
large portions of Asia. Southwest monsoon onset, 
interannual variability and its active-break cycle has large 
implications on various sectors such as agriculture, 
economic development, industrial production 
sustainability, planning & policy formulation. A developing 
country such as India is highly dependent on monsoon 
rains (especially the summer monsoon which contributes 
70% of annual rainfall (Mitra et al., 2002). Despite rapid 
industrialization and technological advancement in 
agricultural practices the nation‘s economy is still highly 
dependent on spatial and temporal distributions of 
summer monsoon rainfalls.   

Agriculture is the backbone of the Indian economy, as 
nearly 70% of the population is dependent on agricultural 
activities for their livelihood. Cereals and pulses are the 
major sustenance for India‘s population. Cereals account 
for 90% of food grains; rice (44%) and wheat (37%) are 
the main cereals with minor cereals such as maize, 
sorghum millet etc. (FAO, 2009). Crop production is one 
of the domains most vulnerable to changing climate 
(Slingo et al., 2005). 

Crop modelling provides a wide range of opportunities 
to simulate the impacts of different environmental 
conditions on crop growth, development and yield 
attributes. Process-based crop simulation models seek to 
characterize the process of crop growth and development 
to environmental factors, crop management and 
genotypic characteristics (e.g., the ‗‗CROPGRO‘‘ model; 
Boote and Jones 1998, ―EPIC‖ model, Williams, 1995, 
―GLAM‖ model, Challinor, et al., 2005). The EPIC crop 
simulation model is a widely used and tested model for  
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simulation of many agro-ecosystem processes including 
plant growth, development, yield attributes, weather, soil 
and agronomic practices.  

Climate change scenarios computed with complex 
atmospheric-ocean coupled models have been 
extensively deployed to assess the impacts of changing 
climate for various geographical regions of the world. The 
current versions of atmospheric-ocean coupled climate 
models have generally well simulated the features of the 
current climate at large and continental scales (IPCC, 
2007). Coupled climate models are our principal tools for 
projecting climate change (Houghton et al., 2001). Many 
researchers (Watterson, 1996; Taylor, 2001; McAvaney, 
2001; Piani et al., 2005; Collins et al., 2006; Delworth et 
al., 2006; Knutti et al., 2006; Shukla et al., 2006; Perkins 
et al., 2007) have evaluated coupled climate models 
based on the ability of the climate models to simulate a 
wide range of diagnostics, including means and variance 
of key climate variables, past climate and some key 
phenomenon (e.g. El Niño-Southern Oscillation, 
monsoons and other specific modes of variability) to 
provide detailed assessments of the strengths and 
weakness of major climate models used in the IPCC 
Third and Fourth Assessment reports. Climate change 
impacts on crop growth, production are well documented 
in last few decades due to the potential impacts of 
climate variability and change. Extensive studies have 
projected the possible impacts of climate change on crop 
production using crop models forcing with global and 
regional climate models (Tao et al., 2003b, 2008b; Parry 
et al., 2004; Challinor et al., 2005; Xiong et al., 2007). 
Many studies have assessed crop response to climate 
change and the possible impacts of future climate change 
on agricultural production (Rosenzweig et al., 1998; 
IPCC, 2007). This working paper focus on the potential 
uncertainty in climate change projections and applying 
reasonable empirical methods in minimising the 
uncertainty. 

This study examines comprehensive assessments of 
impacts that better represent the uncertainties associated 
with climate model projections in addressing potential 
impacts of climate change scenarios from 3 GCMs on 
crop productivity over India. The current study focuses on 
single greenhouse gas emission scenario (A2 SRES) in 
the future (2080s).  
 
 
MATERIALS AND METHODS 
 
There are two main components of the research: firstly, 
we evaluate the GCMs baseline to estimate the 
associated uncertainty. Secondly, we quantified the 
impact of climate change on crop production using bias 
corrected GCMs climate projections. 
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Figure 1: Maps displaying one degree grid points (a) over Indian states and district locations in India 
 
 
Study area 
 
The study is conducted in India especially major paddy 
rice growing states. India is divided into states and union 
territories that are comprised of a number of districts 
(Figure 1). The districts are further divided into blocks. 
The area of Indian states ranges from 3655 km

2
 in Goa to 

342885 km
2
 in Rajasthan; the area of districts varies from 

916.66 km
2
 to 47822 km

2
. Annual reported crop yields at 

state level were obtained from the Indian Statistics 
Department (ISD) from 1950 to 2005. Cropping seasons 
in India are classified into two seasons based on the 
monsoon; Kharif (summer season) is from July to 
October and Rabi (winter season) from October to March.  
 
 
Crop data 
 
Fifteen states across India were selected based on their 
agricultural economic contributions towards the total 
Gross Domestic Product (GDP) of India. At each state, 
crop yield, production, area and fertilizer application data 
for paddy rice, groundnut and maize during the period 
1969-2002 were collected from the Ministry of Statistics 
and Programme Implementation 
(http://www.mospi.gov.in) and Datanet India Pvt. Ltd. 

(http://www.indiastat.com). Per hectare fertilizer data was 
calculated by dividing total fertilizer used with total crop 
area sown in each state. Due to data limitations, it is 
assumed that fertilizer application is homogenous for all 
the grid points within the state. The crop management 
details such as sowing, transplanting, tillage operations 
and harvest dates were obtained from the Indian 
Meteorological Department‘s (IMD) published crop 
calendars and the state agricultural universities. Crop 
calendars are prepared based on long-term crop 
(planting and harvest dates) and climate observations. 
IMD crop calendars IMD-AGRIMET (2008) are used to 
determine optimum start and end dates of growth cycles 
and potential crop combinations under comprehensive 
consideration of climate and crop growth conditions such 
as optimal and minimum temperature for plant growth, 
potential heat unit, growth period, and rain-fed condition. 
Temperature criteria such as minimum crop temperature, 
optimal temperature, and potential heat units from 
planting to physiological maturity have been adopted 
from EPIC parameter files (Kiniry et al., 1995). 
 
 
Climate and soil data 
 
The elevation, slope and soil parameters are collected in  

 a       b 



 
 
 
 
raster and shape file format (ArcGIS 9x). Soil data for 
depth, layers, texture (percentage of sand and silt), soil 
pH, organic carbon content, soil moisture and calcium 
carbonate were obtained from the National Bureau of Soil 
Survey & Land Use Planning (NBSS&LUP 2011), 
Nagpur, India, which represents these soil parameters on 
a 1:250000 scale. Soil water content at wilting point (WP) 
and field capacity (FC) were estimated from soil texture in 
EPIC using the Rawls method (Rawls et al., 1983). 

The daily weather inputs used in driving the EPIC crop 
model are maximum and minimum temperatures and 
rainfall. The daily 1x1 degree gridded climate datasets of 
rainfall (1951-2004) and temperatures (1969-2004) were 
obtained from IMD. Rajeevan et al. (2006) developed the 
1-degree gridded rainfall dataset for the Indian region, 
consisting of 2140 rain gauge stations with 90% data 
availability during the period 1951-2004. The interpolation 
method was as proposed by Shepard (1968) based on 
weights calculated from the distance between the station 
and the grid point.  
 
 
Sources of uncertainty 
 
Model simulations are important tools in understand the 
potential impacts of climate change on agriculture in 
current and future climates. To understand the possible 
impacts of climate change on crop production 
researchers usually couple mechanistic crop models with 
climate model projections. However, when such analysis 
is carried-out the uncertainty in the climate model 
projects along with uncertainties within the crop models 
cascade and limits our level of confidence in addressing 
the possible future impacts.  Climate model projections 
for the future are based on one or more emission driven 
scenarios, the results obtained are relate to certain 
emission scenario. There are large technical 
uncertainties associated in estimating the emission 
scenarios. IPCC narrated emission scenarios are based 
on the estimates of greenhouse gas (GHG) emissions, 
future technology, energy usage, population dynamics, 
economic growth and decisions governments will make 
relating to GHG emissions.  
 
 
Crop model 
 
Physiological crop simulation models are applied in a 
wide range of studies such as seasonal yield forecasting, 
climate change impacts on crop production and crop 
management. Depending upon the scientific discipline, 
there are different types of Crop Simulation Models 
(hereafter CSMs), ranging from very simple to extremely 
advance models that include thousands of equations 
(Hoogenboom, 2000). Different crop models exist across 
the globe, the crop models that are extensively used in 
many parts of the world are: DSSAT (Decision Support  
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System for Agro-technology Transfer) modelling system, 
EPIC (Environmental Policy Integrated Climate) APSIM 
(Agricultural Production System Simulator) CropSyst, 
WOFOST (World Food Studies), GLAM (General Large 
Area Model for Annual Crops) and CENTURY. These 
crop simulation models require large input data to 
simulate the crop-climate dynamic, these models vary 
from each other with respect to their applications and 
they have their own strengths and limitations. The 
Environmental Policy Integrated Climate (EPIC) crop 
simulation model was selected for the study after 
considering the model with other crop simulation models 
like DSSAT, APSIM, CropSyst, Century, CropWat and 
GLAM. DSSAT does not provide a unified model to 
simulate different crops, instead, it brings together a 
number of models for specific crops (ISBNAT, 1989), and 
requires input of genetic coefficients for the crop 
varieties. Obtaining genetic coefficients for paddy rice, 
groundnut and maize crops grown in India was difficult as 
the varieties vary from district to district and in between 
crop growing states. APSIM, CropWat, CropSyst, 
WOFOST and GLAM are not suitable for rice simulation 
because rice parameters are not well calibrated or not 
included (Keating, et al., 2003, Confalonieri and Bocchi 
2005). WOFOST model is sophisticated in describing 
crop physiology, thus need more detail input data 
(Monteith, 1996). The Century model is focused on 
element and material cycles. It is more specifically 
designed for soil processes such as organic matter, 
decomposition, nitrification and de-nitrification (Zhang et 
al., 2002).  

Both annual and perennial crops can be modelled with 
the EPIC crop simulation model. Crops grow from sowing 
date to harvest date or until the accumulated heat units 
equal the potential heat units. Heat unit accumulation 
governs the phenological development of the crop 
(Williams, 1995).  
 
 
Climate simulations and CO2 
 
To explore the sensitivity of CO2 on modelled yields, two 
sets of simulations were developed. The current CO2 
atmospheric concentration is 390 ppm. With the current 
emissions pattern the future, atmospheric CO2 will be 
doubled by the end of 21

st
 century. The direct effect of 

increasing CO2 concentration on plant growth is of 
particular interest because of the possibility of increasing 
crop yields in the future. 
 
 
Climate model 
 
The coupled models of atmosphere and ocean provide 
realistic features of the present climate (IPCC 2001). 
However, there are many concerns in climate projections 
and many uncertainties on a regional scale. The  
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selections of these models are based on the previous 
studies of Annamalai et al.,2006 and Sujata et al., 2007. 

Based on the above studies three coupled models have 
been selected for the current study. They are GFDL 2.1, 
ECHAM and HadCM3. In both the studies GFDL 2.1 
ECHAM and HadCM3 performed well in simulating 
current spatial precipitation pattern over India, hence their 
selection.  

Probability Density Functions (PDFs) were computed 
for three parameters - precipitation, maximum and 
minimum temperatures, to assess the uncertainty 
associated with the coupled climate model projections. 
Climate model projections were evaluated using PDFs, 
one of the major advantages of evaluating climate 
models projections using PDFs is that if the model is able 
to reproduce the entire PDF, this illustrates the strength 
of the model in simulating rare extremes and hence gives 
us more confidence in their projections of future climates. 

A simple skill score test was performed to look at the 
distribution of events in GCMS and observed PDFs. This 
skill score test measures the similarity between two PDFs 
across the entire range of bins. It is a simple and robust 
test that measures the common area between the two 
PDFs curves (Perkins et al, 2007), and is expressed as 

 

𝑆𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑖𝑛 (𝑓𝑜𝑏𝑠  , 𝑓𝑠𝑖𝑚 )

𝑛

1

 

 
Where, Sscore is the sum of n bins used to calculate the 
PDFs, and fobs, fsim are the rainfall or temperature 
frequencies for a given bin in the observations and 
simulations respectively. Values of Sscore equal to 1 
indicate a high skill score in simulating the distribution. 
GCM-modelled rainfall is spatially highly variable; 
performing a skill score based at state level produced 
very low. 
 
 
Uncertainty processing methods for impact 
assessment  
 
The delta method is very simple and widely applied in 
impact assessment studies (Hijmans et al., 2005). A 
common application of the delta method will apply 
monthly changes in temperature and precipitation from 
aGCM, calculated at the grid scale, to the corresponding 
observed set of stations or gridded data sets that are the 
inputs to a crop simulation model. Climate model output 
is used to determine future change in climate with respect 
to the model‟s present-day climate, typically a difference 
for temperature and a percentage change for 
precipitation. Then, these changes are applied to 
observed historical climate data (IMD) for input to an 
impacts model. The delta method assumes that future 
model biases for both mean and variability will be the 
same as those in present day simulations. The 
meteorological variables from the GCMs were used to  

 
 
 
 
calculate the changes in temperatures and precipitation 
(A2 - baseline). The changes in mean monthly climate 
variables both maximum and minimum temperatures and 
relative changes in precipitation were computed and the 
changes in variables are perturbed to the corresponding 
observed historical variables (Mote and Salathe, 2010). 
For this study, we have considered IMD gridded dataset 
and three GCMs simulations of current and future 
climate. The changes in mean climate (A2 – baseline), 
calculated for each climate model and calendar month, 
the changes are applied at daily time scales for the 
corresponding IMD grid cell, as follows: 
 

𝑇𝑁𝑒𝑤 = 𝑇𝑂𝑏𝑠 + 𝑇∆ 
 
Where, TΔis the mean difference in the GCM simulated 
temperature from future period to historical period, for 
each GCM grid cell and perturbations are added to Tobs.  
 
The changes in precipitation are computed as given 
below: 
 

𝑃𝑁𝑒𝑤 = 𝑃𝑂𝑏𝑠 ∗ 𝑃∆ 
 
Where, PΔ is the ratio of the GCM simulated mean 
precipitation from the future (2081-2100) relative to the 
20th century (1961-1990) simulations, for each GCMs 
grid cell. Pobs is the observed IMD daily precipitation and 
the Pnew is the perturbed changes in IMD precipitation. 
Multiplicative perturbation is used for precipitation to 
avoid potential sign problems. 
 
 
RESULTS 
 
EPIC model validation 
 
The objective of this analysis is to test the performance of 
EPIC crop model in simulating the historical paddy rice, 
groundnut and maize yields. Validation of simulated 
yields is carried out at state level by forcing EPIC to 
simulate at a resolution of 1x1 degree grid boxes for the 
years 1969-2002. Validation was performed using Kharif 
(June-October) season simulated paddy rice yields. Crop 
yields were detrended by fitting a linear regression, to 
remove the widely known technological trend. Two 
simulations were carried out across the paddy growing 
states in India. (1) EPIC-forced to simulate for all the grid 
points that fall in the state (EPIC_GRID) and (2) the area 
averaged of IMD data (temperatures and rainfall) for all 
the grid boxes with in the state are computed to drive the 
crop model (EPIC_STATE). For evaluating the crop 
simulation model in the study area various statistics 
(Goodness of fit) were computed such as mean, standard 
deviation, coefficient of variation, correlation and root 
mean square error. Based on the statistical values of 
both observed and simulated crop yields the performance  
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Figure 2: Taylor diagram displaying statistical comparison of observed paddy rice yields with the EPIC simulated paddy 
rice yields estimates at different paddy rice growing states over India (Blue line indicates the strength of correlation and 
green line represents RMSE.) 

 
where, AP: Andhra Pradesh, AS: Assam, BR: Bihar, HR: Haryana, KR: Kerala, KK: Karnataka, MH: Maharashtra, MP: 
Madhya Pradesh, OR: Orissa, PB: Punjab, RJ: Rajasthan, TN: Tamil Nadu, UP Uttar Pradesh and WB: West Bengal are 
the major paddy rice growing states in India 
 
of the EPIC crop model was evaluated. For a hassle free 
interpretation of the results Taylor diagrams (Figure 2) 
were plotted to summarize how close the simulated crop 
yields were at each crop and its growing states. Paddy 
rice is extensively cultivated in fifteen Indian states; 
paddy rice yield simulated using the EPIC at each grid 
point is aggregated to state level and compared with the 
observed yields. Some examples of closeness between 
reported and simulated paddy rice yields are displayed in 
Figure 3. Observed yields are detrended in a 
conventional manner using a simple linear regression 
model to remove the technology influence on crop 
production, leaving the residuals to indicate the year-to-
year variations in yields due to weather. The EPIC 
simulated crop yields are much higher than the observed 
yields prior to 2000 and are nearly equal to observed 
yields after 2000. Simulated yields show better 
agreement with detrended yields than with observed 
yields. The EPIC simulated yields (EPIC_STATE) are 
higher than observed and EPIC simulated yields at each 
grid point (EPIC_GRID) due to averaging the 
temperatures, rainfall and soil in the state, in both the 

simulations the results varied as a function of seasonal 
climate variations and soil water holding characteristics. 
Differences between the simulated (EPIC_GRID) and 
measured yields were within ± 20% of observed 
detrended yields for paddy rice and ground. While, maize 
showed a difference of ± 25%. The observed yield was 
satisfactorily simulated by the EPIC simulation model for 
major crop growing states in India as presented in Table 
1. 
 
Climate model uncertainties 
 
Evaluating the relative skills of coupled models in 
simulating the broad features of present climatology such 
as large-scale tropical precipitation pattern in winter 
(DJF) and summer (JJAS) seasons are the concerns of 
both climate and impact assessment researchers. Before 
assessing the impacts of the projected climate change 
scenarios, the climate models performance skill in the 
region is to be evaluated as a primary footstep. The 
observed (IMD) mean summer monsoon rainfall (JJAS) 
for the period 1951-2004 is 1003 mm with a standard  
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Figure 3 :Comparison of detrended observed (red line) and EPIC modelled paddy riced yields during the period 
1969 -2002).Green and blue lines represents EPIC simulated paddy rice yields EPIC_GRID) EPIC_STATE 
respectively. 

 
 

deviation of 122 mm. While GFDL simulated mean 
summer monsoon rainfall over India (1961-1990) is 1076 
mm with a standard deviation of 232 mm. ECHAM 
modelled mean summer monsoon rainfall over India is 
808 mm with a standard deviation of 165 mm. While, 
HadCM3 climate model is underestimating the summer 
monsoon rainfall over India, the mean summer monsoon 
rainfall (1961-1990) is 694 mm with a standard deviation 
of 161 mm. Probability Density Functions (PDFs) were 
computed for three parameters, precipitation, maximum 
and minimum temperatures to assess the uncertainty 
associated with the coupled climate model projections. 
The strength of climate model in simulating the entire 
PDF is more skilful test than the annual/seasonal mean 
and standard deviation. The selection of variables is 
based on the inputs required for crop model, and the 
importance of the variables in crop growth and 
development. The comparisons of observed and 
simulated precipitation PDFs are presented in Figure 4. 
The daily values below 2.5 mm are omitted to remove 
non-rainy days from comparison following IMD standards. 
GCMs modelled rainfall is spatially highly variable; 
performing a skill score based at state level produced 
very low skill scores (Table 2) due to the aggregation of 

grids at state level. Hence, the skill score test was 
performed at country level by taking the area average 
precipitation from both the GCMs and IMD datasets. The 
skill score obtained at country level for three GCMs are: 
0.80 (GFDL), 0.98 (ECHAM) and 0.96 (HadCM3). 
Overall, the climate models simulated mean surface 
temperature are in good agreement with IMD 
observations as presented in Table 3. Overall 
performance of the climate model varies from variable to 
variable in the region, all the three climate models shows 
a poor skill in simulating the monsoon precipitation over 
the Indian-sub continent. The GFDL skill score for 
precipitation was found to be better than the other two 
climate models. However, the GFDL has underestimated 
surface temperatures in most parts of India. ECHAM and 
HadCM3 showed poor skill in reproducing the current 
precipitation conditions over India, but both the models 
performance in reproducing current surface temperature 
was satisfactory. 
 
Impressions of climate change on agricultural crop 
yields 
 
Assessment of climate change induced future yield  
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Figure 4: (a) Probability density functions of ECHAM5 modelled (Baseline: red, SRES A2: green) and observed 
(IMD: blue) rainfall, (b) Probability density functions of GFDL modelled (Baseline: red, SRES A2: green) and 
observed (IMD: blue) rainfall, (c) Probability density functions of HadCM3 modelled (Baseline: red, SRES A2: green) 
and observed (IMD: blue) rainfall  
 
 
variations is addressed by forcing EPIC with climate 
model simulated climate for the baseline (1961-1990) and 
SRES A2 (2071-2100). IMD forced EPIC paddy rice 
yields in the region ranges from 0.96 to 3.99 t/ha, in 
contrast the observed detrended yields ranges from 1.11 
to 3.49 t/ha. The paddy rice yields simulated with EPIC 
crop model, driven with ECHAM5 baseline (1961-1990) 
ranges from 0.77 to 2.76 t/ha. Paddy rice yields simulated 
with ECHAM5 baseline climate are much lower than the 
observed and IMD simulated yields in the region due to 
poor precipitation amounts simulated by the climate 
model in the region.For instance, simulated paddy rice 
yields at Gujarat (GJ), Haryana (HR), Uttar Pradesh (UP) 
and West Bengal (WB) are far below the observed and 
IMD simulated yields (Figure 5). The climate model 
underestimates precipitation amounts in these states, at 
Gujarat the observed mean summer monsoon (JJAS) 
rainfall amount is 700 mm, while the ECHAM5 simulated 
rainfall amount is 200 mm. 

Simulated average paddy rice yields for the baseline 
(GFDL) ranges from 0.76 to 2.75 t/ha. The GFDL forced 
EPIC paddy rice yields in the region are very low at 

states such as Assam (AS), Gujarat (GJ), Haryana (HR), 
Punjab (PB), Tamil Nadu (TN) and Uttar Pradesh (UP). 
The GFDL climate model underestimates the surface 
temperatures in the above states. At Assam, the 
modelled precipitation is nearly representing the 
observed precipitation amounts with high year-to-year 
variability. The average recorded maximum and minimum 
temperatures at Assam were 32° and 20°C respectively, 
while the GFDL modelled day and night temperatures are 
17.5° and 10°C. Due to lower temperatures simulated in 
the baseline climate at Assam, potential heat units 
required to complete the growth stages are not attained. 

EPIC simulated paddy rice yields driven with HadCM3 
modelled baseline climate for India were very low 
compared to IMD forced EPIC yields. Paddy crop 
suffered substantial water and temperature stress during 
the growing period, because of the poor representation of 
the observed climatology. The crop model failed to 
simulate viable yields at Bihar, Gujarat, Haryana and 
Punjab sates. At Bihar state the climate model 
underestimates surface temperatures, very low 
temperatures were modelled for the baseline simulation 
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Figure 5: Comparison of mean and associated inter-annual variability (error bars) in 
simulated paddy rice yields driven using AOGCMs baseline climate with observed 
where, AP: Andhra Pradesh, AS: Assam, BR: Bihar, HR: Haryana, KR: Kerala, KK: 
Karnataka, MH: Maharashtra, MP: Madhya Pradesh, OR: Orissa, PB: Punjab, RJ: 
Rajasthan, TN: Tamil Nadu, UP Uttar Pradesh and WB: West Bengal are the major 
paddy rice growing states in India 
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Table 1: PDF based skill score for 
precipitation for each climate model 
averaged over each state in India 

State GFDL ECHAM HadCM3 

AP 0.19 0.20 0.18 

AS 0.40 0.38 0.33 

BR 0.22 0.18 0.18 

GJ 0.06 0.02 0.04 

HR 0.08 0.07 0.07 

KK 0.18 0.20 0.17 

KR 0.28 0.30 0.23 

MH 0.16 0.18 0.14 

MP 0.14 0.15 0.12 

OR 0.21 0.23 0.21 

PB 0.16 0.06 0.07 

RJ 0.07 0.05 0.03 

TN 0.17 0.16 0.13 

UP 0.17 0.15 0.16 

WB 0.22 0.19 0.26 

 

Table 2: PDF based skill score for mean 
temperature for each climate model 
averaged over each state in India 

State GFDL ECHAM HadCM3 

AP 0.75 0.87 0.68 

AS 0.36 0.69 0.32 

BR 0.61 0.65 0.31 

GJ 0.83 0.72 0.80 

HR 0.23 0.53 0.17 

KK 0.82 0.69 0.46 

KR 0.50 0.30 0.20 

MH 0.89 0.74 0.89 

MP 0.87 0.79 0.84 

OR 0.86 0.77 0.66 

PB 0.79 0.56 0.75 

RJ 0.80 0.66 0.82 

TN 0.82 0.66 0.86 

UP 0.75 0.64 0.57 

WB 0.86 0.59 0.65 

 

where, AP: Andhra Pradesh, AS: Assam, 

BR: Bihar, HR: Haryana, KR: Kerala, KK: 

Karnataka, MH: Maharashtra, MP: Madhya 

Pradesh, OR: Orissa, PB: Punjab, RJ: 

Rajasthan, TN: Tamil Nadu, UP Uttar 

Pradesh and WB: West Bengal are the 

major paddy rice growing states in India 

 
and as a result the crop model simulated severe temperature stress and most of the crop plants were  
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damaged due to low temperatures. At Haryana the 
simulated average seasonal rainfall is 200 mm, Gujarat 
and Punjab the mean seasonal rainfall modelled is below 
130 mm, paddy rice crop suffered from heavy water 
stress due to the poor rainfall simulated in these 
locations. 

Paddy rice yields decreased dramatically in the future 
up to -74 %, as displayed in Figure 6. GFDL future 
projections show a decrease in paddy rice yield in all the 
states except for AS and TN states. In these states the 
baseline climate is poorly represented as explained 
earlier. EPIC modelled paddy rice yields with ECHAM5 

showed that paddy rice yields in the future are 
substantially decreasing except for BR state. ECHAM5 
modelled rainfall amounts at Bihar for the baseline 
scenario is very low compared to the IMD, in the climate 
change scenario the precipitation amounts are increasing 
with a marginal increase in temperatures hence paddy 
rice yields are increasing at Bihar state. 

Paddy rice yields are increasing in future projected 
climate scenarios of HadCM3 in few states, such as Bihar 
(374%), Gujarat (30%), Haryana (61%), Madhya Pradesh 
(25%) and Punjab (20%). In other states, crop yields are 
decreasing from -49 to -6%. At Bihar state, the baseline  
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temperatures were very low and as a result, the crop 
plants were damaged due to frost. In future projected 
climate scenarios extreme minimum temperature are 
becoming less frequent and as a result crop yields are 
increasing as compared to baseline but still below 
observed yields. HadCM3 modelled low average 
seasonal precipitation amounts in the baseline scenario 
(105 mm) at Gujarat, in the future the precipitation 
amounts are increasing by 100% (237 mm) as compared 
to the baseline. The observed total average seasonal 
precipitation at Gujarat is 719 mm; the climate model fails 
to reproduce the observed precipitation conditions in this 
state in both the baseline and SRES A2 scenarios. 
Similarly, at Haryana, Madhya Pradesh and Punjab 
states simulated future precipitation amounts are 
considerably increasing compared to the baseline and 
hence the crop yields are increasing. 

When the atmospheric CO2 concentration is increased 
to 550 ppm in the EPIC crop simulation model to consider 
the possible fertilization effect on paddy rice yield for the 
SRES A2 climate change scenario, it is expected that 
yields would increase in most parts of India. Only few 
states show an increase in yields in future projected 
climate change scenario (A2 550 ppm - Baseline 350 
ppm). Most of the paddy rice yields are increasing 
relative to the lower CO2 levels in the baseline simulation. 
A clear direct influence of elevated CO2 can be measured 
at states where poor baseline yields were simulated due 
to the poor estimation of baseline climate in the region. 

With the CO2 fertilization effect, paddy rice yield would 
increase by +20% as compared to without CO2 
fertilization effect. 
 
Uncertainty processing methods 
 
It is noted that the selected GCMs performance in 
reproducing current climate precipitation was very poor in 
both spatial and temporal aspects. The GCMs are either 
underestimating or overestimating the all-India summer 
monsoon rainfall amounts. ECHAM5 and HadCM3 
coupled models were measured to underestimate the 
precipitation amounts in most parts of India. GFDL is 
overestimating precipitation amounts. However, 
underestimating the surface temperatures at the regional 
scale. Crop simulation models are highly sensitive to the 
changes in climate input as this data is the key driving 
factor for the simulated crop yields.  

Agricultural impact studies using GCMs simulations as 
inputs need to define realistic changes in future projected 
temperatures and precipitation. Unbiased and nearly 
realistic changes in temperatures and precipitation could 
be achieved with downscaling.  

The simulated crop yields using the perturbed climate 
are gradually decreasing in the three climate models 
projected high emission scenario (SRES A2) due to rise 
in temperatures. HadCM3 showed highest decrease in 
simulated crop yields followed by ECHAM and GFDL as 
displayed in Figure 7 and Figure 8. The HadCM3  
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modelled maximum temperature in the region is projected 
to increase from +3°C to +6°C and minimum temperature 
are increasing by +4°C to +6.5°C. 

Temperatures are increasing in all months but the 
highest increase is measured during the Kharif crop 
reproductive phase i.e., in October and November 
months. The projected future rainfall is increasing during 
the monsoon season but it is decreasing during the 
reproductive phase. The perturbed HadCM3 climate 
change scenario driven EPIC simulated paddy rice yields 
in the region are decreasing from -75% to -15%. An 
increase of 1.44% in paddy rice yields is measured at 
Kerala state, but the state has only two HadCM3 grid 
points and the grid points has a landmass around 30% 
remaining area is under ocean. Most of the HadCM3 grid 
points over Kerala state fall under ocean and as a result 
the diurnal temperature range is very small (less than 
2°C). The inter-annual variability in HadCM3 perturbed 
observed climate simulated paddy rice yields is similar to 

the year-to-year variability in paddy rice yields simulated 
using IMD observed climate. North Indian states such as 
Bihar, Gujarat, Punjab, Rajasthan and Uttar Pradesh and 
Tamil Nadu in the south coast and West Bengal in the 
east coast show a decrease of 50% or more in HadCM3 
perturbed simulated paddy rice yields. At Bihar, Gujarat, 
Punjab, Rajasthan and Uttar Pradesh the temperatures, 
both maximum and minimum temperatures were 
increasing from +4.5° to +7°C and the highest increase is 
measured during post summer monsoon season i.e., 
from October to January. 

In the elevated CO2 simulations paddy rice yields are 
increasing by 15% to 17%. Due to the Rubisco activity in 
C3 plants in elevated CO2, simulates higher 
photosynthetic carbon grain and net primary production 
and at the same time increases the nitrogen and water 
use efficiency. As a result, higher grain yields are 
obtained in the elevated CO2 simulations using the EPIC 
crop simulation model. 



 
 
 
 
CONCLUSIONS 
 
The statistical evaluations have indicated that the EPIC 
simulation model has satisfactorily simulated the 
corresponding historical crop yields at regional scale. In 
terms of model validation, better simulation performance 
(see goodness of fit) is noticed. This indicates, the crop 
model has the ability to model paddy rice yields across 
wide range of environments over India. The analysis has 
highlighted three major points. First, the aggregate 
production impacts of possible future climate change to 
21

st
 century on paddy rice major crop growing states are 

comparatively modest in the southern states to sever in 
the north western states of India. A 40% and above 
decrease in crop yields by the end of 21

st
 century is 

certainly a serious issue especially in the Northern states 
like, Gujarat, Haryana Punjab,  Rajasthan, Uttar Pradesh. 
Impacts can certainly be compensated with plant 
breeding and technological interventions up to certain 
extend (Pardey and Beintema, 2001). 

Second, the aggregated results at state level hide 
enormous uncertainty due to poor representation of 
baseline climate. Downscaled and bias correct the 
baseline and future climate projections has improved the 
results and builds confidence in addressing possible 
potential impacts of climate change on agricultural 
production. In some areas, increased yields may allow 
intensification of agriculture and concomitant increase in 
rural wealth. However, in areas where a yield reduction is 
expected to be sever, considerable disruption to rural life 
may occur. Third, results indicate that with increase in 
surface temperatures along with inter-annual variability of 
precipitation crop yields are decreasing severely, poses 
treat to small holder farmers in the region.  

In general, the results indicate that the uncertainty in 
the GCMs projected future climate change scenario 
during the growing season represent a greater source of 
uncertainty. The findings show that the future 
precipitation changes will be far greater relative to year-
to-year variability. While, the surface temperatures are 
dramatically increasing up to 6.5°C by the end of the 
century. Impact of temperature uncertainties, and in 
particular the uncertainties in crop response to 
temperature, should receive increased attention.  

In the future, actual yield changes will reflect the 
combined influence of the (generally negative) effects of 
warming and the potentially positive effects of 
management, technology, and elevated atmospheric 
CO2. The effects of elevated atmospheric CO2 on 
perennial crops are not well known, as few experiments 
have been conducted (Bindi et al., 2001 and Idso and 
Kimball, 2001). The projections presented in this study 
may be used to guide future adaptation efforts, for 
instance by concentrating efforts on developing heat 
tolerant varieties. Therefore, long-term losses may largely 
be avoidable with strategic crop adaptation measures. 

The reliability of impacts of climate change on  
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agricultural crops increases with the accuracy of 
simulated baseline yields. The poor simulated crop yield 
in a baseline scenario reduces confidence in assessing 
the impacts of future projected climate change on crop 
yields. In order to improve reliability, bias correction 
method should be applied to assess the impacts of 
climate change on crops. The results from the analysis 
conclude that instead of forcing the crop models with the 
raw climate model projections, climate data need to be 
processed to remove the associated bias in simulated 
climate for better impacts assessment. 
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