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We propose a minimum-process coordinated checkpointing algorithm for non-deterministic mobile 
distributed systems, where no useless checkpoints are taken. An effort has been made to minimize the 
blocking of processes and synchronization message overhead. We capture the partial transitive 
dependencies during the normal execution by piggybacking dependency vectors onto computation 
messages. Frequent aborts of checkpointing procedure may happen in mobile systems due to exhausted 
battery, non-voluntary disconnections of MHs, or poor wireless connectivity. Therefore, we propose that 
in the first phase, all concerned MHs will take mutable checkpoint only. Ad hoc  checkpoint is stored on 
the memory of MH only. In this case, if some process fails to take checkpoint in the first phase, then MHs 
need to abort their ad hoc  checkpoints only. In this way, we try to minimize the loss of checkpointing 
effort when any process fails to take its checkpoint in coordination with others. 
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INTRODUCTION 
 
A distributed system is a collection of independent entities 
that cooperate to solve a problem that cannot be 
individually solved. A mobile computing system is a 
distributed system where some of processes are running 
on mobile hosts (MHs), whose location in the network 
changes with time. The number of processes that take 
checkpoints is minimized to 1) avoid  awakening of MHs in 
doze mode of operation, 2) minimize thrashing of MHs with 
checkpointing activity, 3) save limited battery life of MHs 
and low bandwidth of wireless channels. In minimum-
process checkpointing protocols, some useless 
checkpoints are taken or blocking of processes takes 
place. In this chapter, we propose a minimum-process 
coordinated checkpointing algorithm for non-deterministic 

mobile distributed systems, where no useless checkpoints 
are taken. An effort has been made to minimize the 
blocking of processes and synchronization message 
overhead. We capture the partial transitive dependencies 
during the normal execution by piggybacking dependency 
vectors onto computation messages.    Frequent aborts of 
checkpointing procedure may happen in mobile systems 
due to exhausted battery, non-voluntary disconnections of 
MHs, or poor wireless connectivity. Therefore, we propose 
that in the first phase, all concerned MHs will take mutable 
checkpoint only. Ad hoc  checkpoint is stored on the 
memory of MH only. In this case, if some process fails to 
take checkpoint in the first phase, then MHs need to abort 
their ad hoc  checkpoints only. In this way, we try to  
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minimize the loss of checkpointing effort when any process 
fails to take its checkpoint in coordination with others. 

Most of the existing coordinated checkpointing 
algorithms [37, 63] rely on the two-phase protocol and save 
two kinds of checkpoints on the stable storage: tentative 
and permanent. In the first phase, the initiator process 
takes a tentative checkpoint and requests all or selective 
processes to take their tentative checkpoints. If all 
processes are asked to take their checkpoints, it is called 
all-process coordinated checkpointing [3]. Alternatively, if 
selective communicating processes are required to take 
checkpoints, it is called minimum-process checkpointing.  
Each process informs the initiator whether it succeeded in 
taking a tentative checkpoint. After the initiator has 
received positive acknowledgments from all relevant 
processes, the algorithm enters the second phase. 
Alternatively, if a process fails to take its tentative 
checkpoint in the first phase, the initiator process requests 
all or concerned processes to abort their tentative 
checkpoint.  

If the initiator learns that all concerned processes have 
successfully taken their tentative checkpoints, the 
algorithm enters in the second phase and the initiator asks 
the relevant processes to make their tentative checkpoints 
permanent.   

In order to record a consistent global checkpoint, when a 
process takes a checkpoint, it asks (by sending checkpoint 
requests to) all relevant processes to take checkpoints. 
Therefore, coordinated checkpointing suffers from high 
overhead associated with the checkpointing process [11, 
12]. Much of the previous work [4, 5, 6] in coordinated 
checkpointing has focused on minimizing the number of 
synchronization messages and the number of checkpoints 
during the checkpointing process. However, some 
algorithms (called blocking algorithm) force all relevant 
processes in the system to block their computations during 
the checkpointing process. Checkpointing includes the time 
to trace the dependency tree and to save the states of 
processes on the stable storage, which may be long. 
Moreover, in mobile computing systems, due to the 
mobility of MHs, a message may be routed several times 
before reaching its destination. Therefore, blocking 
algorithms may dramatically reduce the performance of 
these systems [31]. Recently, non-blocking algorithms  
have received considerable attention. In these algorithms, 
processes need not block during the checkpointing by 
using a checkpointing sequence number to identify orphan 
messages. Moreover, these algorithms require all 
processes in the system to take checkpoints during 
checkpointing, even though many of them may not be 
necessary.  
 
 
System Model  
 
Our system model consists of a number of MHs which  
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communicate through mobility support stations (MSSs). 
Each MSS is a fixed network host which provides wireless 
communication support for a fixed geographical area, 
called a cell. MSSs are linked together over the wired data 
networks. The distributed system consisting of n 
processes, running on MHs or MSSs. The MHs can 
communicate with the MSS through wireless channels. We 
assume that wireless channels and logical channels are all 
FIFO order. If a MH moves to the cell of another base 
station, a wireless channel to the old MSS is disconnected 
and a wireless channel in the new MSS is allocated. 
However, its checkpoint related information is still with the 
old MSS. A MH may voluntarily disconnect from mobile 
computing networks. The MH does not send and receive 
any message when it is in a disconnected state. We also 
assume a closed system that consists of nodes, links, and 
disks. Input is stored on disk before operation begins. 
Output is stored on disk when the job ends. 

There is no common clock, shared memory or central 
coordinator. Message passing is the only mode of 
communication between any pair of processes. The 
messages originated from a source Mh, are received by 
the local Mobile support stations and then forwarded to the 
destination MH.  Any process can initiate checkpointing. It 
is assumed that processes may be failed during processing 
but there is no communication link failure.  Messages are 
exchanged with finite but arbitrary delays. In our algorithm, 
we consider that the processes which are running in the 
distributed mobile systems are non-deterministic. 
 
 
Basic Idea  
 
All Communications to and from MH pass through its local 
MSS. The MSS maintains the dependency information of 
the MHs which are in its cell. The dependency information 
is kept in Boolean vector Ri for process Pi. The vector has 
n bits for n processes. When Ri[j] is set to 1, it represents 
Pi depends upon Pj. For every Pi, Ri is initialized to 0 
except Ri[i], which is initialized to l. When a process Pi 
running on an MH, say MHp, receives a message from a 
process Pj, MHp's local MSS should set Ri[j] to 1.If Pj has 
taken its permanent checkpoint after sending m,  Ri[j] is not 
updated. 

Suppose there are processes Pi and Pj running on MHs, 
MHi and MHj with dependency vectors Ri and Rj. The 
dependency vectors of MHs, MHi and MHj are maintained 
by their local MSSs, MSSi and MSSj. Process Pi running on 
MHi sends message m to process Pj running on MHj. The 
message is first sent to MSSi (local MSS of MHi). MSSi 
maintains the dependency vector Ri of MHi. MSSi appends 
Ri with message m and sends it to MSSj (local MSS of 
MHj). MSSj maintains the dependency vector Rj of MHj. 
MSSj replaces Rj with bitwise logical OR of dependency 
vectors Ri and Rj and sends m to Pj. 

In Figure 1, there are five processes P1, P2, P3, P4, P5  
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 Figure 1.  Maintenance of Dependency Vectors 

 
 
 
with dependency vectors R1, R2, R3, R4, R5 initialized to 
00001, 00010, 00100, 01000, and 10000 respectively. 
Initially, every process depends upon itself. Now process 
P1 sends m to P2. P1 appends R1 with m. P2 replaces R2 
with the bitwise logical OR of R1(00001)  and R2(00010), 
which comes out to be   (00011). Now P2 sends m2 to P3 
and appends R2 (00011) with m2. Before receiving m2, the 
value of R3 at P3 was 00100. After receiving m2, P3 
replaces R3 with the bitwise logical OR of R2 (00011) and 
R3 (00100) and  R3 becomes (00111). Now P4 sends m3 
along with R4 (01000) to P5. After receiving m3, R5 becomes 
(11000).In this case, if P3 starts checkpointing at t1, it will 
compute the tentative minimum set equivalent to 
R3(00111),  which comes  out to be {P1, P2, P3}. In this 
way, partial transitive dependencies are captured during 
normal computations.   

In coordinated checkpointing, if a single process fails to 
take its checkpoint; all the checkpointing effort goes waste, 
because, each process has to abort its tentative checkpoint 
[28, 62, 72, 77, 90, 92]. Furthermore, in order to take the 
tentative checkpoint, an MH needs to transfer large 
checkpoint data to its local MSS over wireless channels. 
Hence, the loss of checkpointing effort may be exceedingly 
high due to frequent aborts of checkpointing algorithms 
especially in mobile systems.  In mobile distributed 
systems, there remain certain issues like: abrupt 
disconnection, exhausted battery power, or failure in 
wireless bandwidth. So there remains a good probability 
that some MH may fail to take its checkpoint in 
coordination with others. Therefore, we propose that  in the 
first phase, all processes in the minimum set,  take ad hoc 
checkpoint only. Ad hoc checkpoint is stored on the 
memory of MH only. If some process fails to take its 
checkpoint in the first phase, then other MHs need to abort 
their ad hoc checkpoints only. The effort of taking an ad 

hoc checkpoint is negligible as compared to the tentative 
one. In other protocols [3, 4], all concerned processes 
need to abort their tentative checkpoints in this situation. 
Hence the loss of checkpointing effort in case of an abort 
of the checkpointing procedure is dramatically low in the 
proposed scheme as compared to other coordinated 
checkpointing schemes for mobile distributed systems [5, 
6].    

In this second phase, a process converts its ad hoc 
checkpoint into tentative one. By using this scheme, we try 
to minimize the loss of checkpointing effort in case of abort 
of checkpointing algorithm in the first phase.  

A non-blocking checkpointing algorithm does not require 
any process to suspend its underlying computation. When 
processes do not suspend their computation, it is possible 
for a process to receive a computation message from 
another process, which is already running in a new 
checkpointing interval. If this situation is not properly dealt 
with, it may result in an inconsistency. During the 
checkpointing procedure, a process Pi may receive m from 
Pj such that Pj has taken its checkpoint for the current 
initiation whereas Pi has not. Suppose, Pi processes m, 
and it receives checkpoint request later on, and then it 
takes its checkpoint. In that case, m will become orphan in 
the recorded global state. We propose that only those 
messages, which can become orphan, should be buffered 
at the sender’s end.  When a process takes its ad hoc 
checkpoint, it is not allowed to send any message till it 
receives the tentative checkpoint request. However, in this 
duration, the process is allowed to perform its normal 
computations and receive the messages. When a process 
receives the tentative checkpoint request, it is confirmed 
that every concerned process has taken its ad hoc 
checkpoint. Hence, a message generated for sending by a 
process after getting tentative checkpoint request cannot  
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become orphan. Hence, a process can send the buffered 
messages after getting the tentative checkpoint request 
from the initiator.  
 
 
The Proposed Algorithm  
 
First phase of the algorithm:  
 
When a process, say Pi, running on an MH, say MHi, 
initiates a checkpointing, it sends a checkpoint initiation 
request to its local MSS, which will be the proxy MSS (if 
the initiator runs on an MSS, then the MSS is the proxy 
MSS). The proxy MSS maintains the dependency vector of 
Pi say Ri. On the basis of Ri, the set of dependent 
processes of Pi is formed, say Sminset. The proxy MSS 
broadcasts ckpt (Sminset) to all MSSs. When an MSS 
receive ckpt (Sminset) message, it checks, if any processes 
in Sminset are in its cell. If so, the MSS sends ad hoc 
checkpoint request message to them. Any process 
receiving a ad hoc checkpoint request takes a ad hoc 
checkpoint and sends a response to its local MSS. After an 
MSS received all response messages from the processes 
to which it sent ad hoc checkpoint request messages, it 
sends a response to the proxy MSS. It should be noted 
that in the first phase, all processes take the ad hoc 
checkpoints. For a process running on a static host, ad hoc 
checkpoint is equivalent to tentative checkpoint. But, for an 
MH, ad hoc checkpoint is different from tentative 
checkpoint. In order to take a tentative checkpoint, an MH 
has to record its local state and has to transfer it to its local 
MSS. But, the ad hoc checkpoint is stored on the local disk 
of the MH. It should be noted that the effort of taking a ad 
hoc checkpoint is very small as compared to the tentative 
one. For a disconnected MH that is a member of minimum 
set, the MSS that has its disconnected checkpoint, 
considers its disconnected checkpoint as the required 
come.  
 
 
Second Phase of the Algorithm:  
 
After the proxy MSS has received the response from every 
MSS, the algorithm enters the second phase. If the proxy 
MSS learns that all relevant processes have taken their ad 
hoc checkpoints successfully, it asks them to convert their 
ad hoc checkpoints into tentative ones and also sends the 
exact minimum set along with this request. Alternatively, if 
initiator MSS comes to know that some process has failed 
to take its checkpoint in the first phase, it issues abort 
request to all MSS. In this way the MHs need to abort only 
the ad hoc checkpoints, and not the tentative ones. In this 
way we try to reduce the loss of checkpointing effort in 
case of abort of checkpointing algorithm in first phase. 
When an MSS receives the tentative checkpoint request, it 
asks all the process in the minimum set, which are also  
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running in itself, to convert their ad hoc checkpoints into 
tentative ones. When an MSS learns that all relevant 
process in its cell have taken their tentative checkpoints 
successfully, it sends response to proxy MSS. If any MH 
fails to transfer its checkpoint data to its local MSS, then 
the failure response is sent to the proxy MSS; which in 
turn, issues the abort message.   
 
 
Third Phase of the Algorithm: 
 
Finally, when the proxy MSS learns that all processes in 
the minimum set have taken their tentative checkpoints 
successfully, it issues commit request to all MSSs. When a 
process in the minimum set gets the commit request, it 
converts its tentative checkpoint into permanent one and 
discards its earlier permanent checkpoint, if any. 
 
Massage Handling During Checkpointing:  
 
When a process takes its ad hoc checkpoint, it does not 
send any massage till it receives the tentative checkpoint 
request. This time duration of a process is called its 
uncertainty period.  Suppose, Pi sends m to Pj after taking 
its ad hoc checkpoint and Pj has not taken its ad hoc 
checkpoint at the time of receiving m. In this case, if Pj 
takes its ad hoc checkpoint after processing m, then m will 
become orphan. Therefore, we do not allow Pi to send any 
massage unless and until every process in the minimum 
set have taken its ad hoc checkpoint in the first phase. Pi 
can send massages when it receives the tentative 
checkpoint request; because, at this moment every 
concerned process has taken its ad hoc checkpoint and m 
cannot become orphan. The massages to be sent are 
buffered at senders end. In this duration, a process is 
allowed to continue its normal computations and receive 
massages. 
 
 
CONCLUSION 
 
In this paper, we have proposed a minimum-process 
checkpointing protocol for non-deterministic mobile 
distributed systems, where no useless checkpoints are 
taken and an effort has been made to minimize the 
blocking of processes. We try to reduce the checkpointing 
time and blocking time of processes by limiting 
checkpointing tree which may be formed in other 
algorithms [28, 37]. We captured the transitive 
dependencies during the normal execution by 
piggybacking dependency vectors onto computation 
messages.  The Z-dependencies are well taken care of in 
this protocol. We also try to reduce the loss of 
checkpointing effort when any process fails to take its 
checkpoint in coordination with others.    
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