

Full Length Research

Handling Recurrent Failures in Coordinated
Checkpointing for Mobile Distributed Systems

Maridul Kothari and Parveen Kumar

Department of Computer Science, Nims University, Jaipur

Accepted 27 November 2016

We propose a minimum-process coordinated checkpointing algorithm for non-deterministic mobile
distributed systems, where no useless checkpoints are taken. An effort has been made to minimize the
blocking of processes and synchronization message overhead. We capture the partial transitive
dependencies during the normal execution by piggybacking dependency vectors onto computation
messages. Frequent aborts of checkpointing procedure may happen in mobile systems due to exhausted
battery, non-voluntary disconnections of MHs, or poor wireless connectivity. Therefore, we propose that
in the first phase, all concerned MHs will take mutable checkpoint only. Ad hoc checkpoint is stored on
the memory of MH only. In this case, if some process fails to take checkpoint in the first phase, then MHs
need to abort their ad hoc checkpoints only. In this way, we try to minimize the loss of checkpointing
effort when any process fails to take its checkpoint in coordination with others.

Keyword: Fault Tolerance, Mobile Computing Systems, Coordinated Checkpointing, Rollback Recovery,
Distributed Systems.

Cite This Article As: Kothari M, Kumar P (2016). Handling Recurrent Failures in Coordinated Checkpointing for
Mobile Distributed Systems. Inter. J. Acad. Res. Educ. Rev. 4(5): 158-162

INTRODUCTION

A distributed system is a collection of independent entities
that cooperate to solve a problem that cannot be
individually solved. A mobile computing system is a
distributed system where some of processes are running
on mobile hosts (MHs), whose location in the network
changes with time. The number of processes that take
checkpoints is minimized to 1) avoid awakening of MHs in
doze mode of operation, 2) minimize thrashing of MHs with
checkpointing activity, 3) save limited battery life of MHs
and low bandwidth of wireless channels. In minimum-
process checkpointing protocols, some useless
checkpoints are taken or blocking of processes takes
place. In this chapter, we propose a minimum-process
coordinated checkpointing algorithm for non-deterministic

mobile distributed systems, where no useless checkpoints
are taken. An effort has been made to minimize the
blocking of processes and synchronization message
overhead. We capture the partial transitive dependencies
during the normal execution by piggybacking dependency
vectors onto computation messages. Frequent aborts of
checkpointing procedure may happen in mobile systems
due to exhausted battery, non-voluntary disconnections of
MHs, or poor wireless connectivity. Therefore, we propose
that in the first phase, all concerned MHs will take mutable
checkpoint only. Ad hoc checkpoint is stored on the
memory of MH only. In this case, if some process fails to
take checkpoint in the first phase, then MHs need to abort
their ad hoc checkpoints only. In this way, we try to

International Journal of
Academic Research in
Education and Review

Vol. 4(5), pp. 158-162, November 2016
DOI: 10.14662/IJARER2016.026
Copy © right 2016
Author(s) retain the copyright of this article
ISSN: 2360-7866
http://www.academicresearchjournals.org/IJARER/Index.htm

minimize the loss of checkpointing effort when any process
fails to take its checkpoint in coordination with others.

Most of the existing coordinated checkpointing
algorithms [37, 63] rely on the two-phase protocol and save
two kinds of checkpoints on the stable storage: tentative
and permanent. In the first phase, the initiator process
takes a tentative checkpoint and requests all or selective
processes to take their tentative checkpoints. If all
processes are asked to take their checkpoints, it is called
all-process coordinated checkpointing [3]. Alternatively, if
selective communicating processes are required to take
checkpoints, it is called minimum-process checkpointing.
Each process informs the initiator whether it succeeded in
taking a tentative checkpoint. After the initiator has
received positive acknowledgments from all relevant
processes, the algorithm enters the second phase.
Alternatively, if a process fails to take its tentative
checkpoint in the first phase, the initiator process requests
all or concerned processes to abort their tentative
checkpoint.

If the initiator learns that all concerned processes have
successfully taken their tentative checkpoints, the
algorithm enters in the second phase and the initiator asks
the relevant processes to make their tentative checkpoints
permanent.

In order to record a consistent global checkpoint, when a
process takes a checkpoint, it asks (by sending checkpoint
requests to) all relevant processes to take checkpoints.
Therefore, coordinated checkpointing suffers from high
overhead associated with the checkpointing process [11,
12]. Much of the previous work [4, 5, 6] in coordinated
checkpointing has focused on minimizing the number of
synchronization messages and the number of checkpoints
during the checkpointing process. However, some
algorithms (called blocking algorithm) force all relevant
processes in the system to block their computations during
the checkpointing process. Checkpointing includes the time
to trace the dependency tree and to save the states of
processes on the stable storage, which may be long.
Moreover, in mobile computing systems, due to the
mobility of MHs, a message may be routed several times
before reaching its destination. Therefore, blocking
algorithms may dramatically reduce the performance of
these systems [31]. Recently, non-blocking algorithms
have received considerable attention. In these algorithms,
processes need not block during the checkpointing by
using a checkpointing sequence number to identify orphan
messages. Moreover, these algorithms require all
processes in the system to take checkpoints during
checkpointing, even though many of them may not be
necessary.

System Model

Our system model consists of a number of MHs which

Kothari and Kumar 159

communicate through mobility support stations (MSSs).
Each MSS is a fixed network host which provides wireless
communication support for a fixed geographical area,
called a cell. MSSs are linked together over the wired data
networks. The distributed system consisting of n
processes, running on MHs or MSSs. The MHs can
communicate with the MSS through wireless channels. We
assume that wireless channels and logical channels are all
FIFO order. If a MH moves to the cell of another base
station, a wireless channel to the old MSS is disconnected
and a wireless channel in the new MSS is allocated.
However, its checkpoint related information is still with the
old MSS. A MH may voluntarily disconnect from mobile
computing networks. The MH does not send and receive
any message when it is in a disconnected state. We also
assume a closed system that consists of nodes, links, and
disks. Input is stored on disk before operation begins.
Output is stored on disk when the job ends.

There is no common clock, shared memory or central
coordinator. Message passing is the only mode of
communication between any pair of processes. The
messages originated from a source Mh, are received by
the local Mobile support stations and then forwarded to the
destination MH. Any process can initiate checkpointing. It
is assumed that processes may be failed during processing
but there is no communication link failure. Messages are
exchanged with finite but arbitrary delays. In our algorithm,
we consider that the processes which are running in the
distributed mobile systems are non-deterministic.

Basic Idea

All Communications to and from MH pass through its local
MSS. The MSS maintains the dependency information of
the MHs which are in its cell. The dependency information
is kept in Boolean vector Ri for process Pi. The vector has
n bits for n processes. When Ri[j] is set to 1, it represents
Pi depends upon Pj. For every Pi, Ri is initialized to 0
except Ri[i], which is initialized to l. When a process Pi
running on an MH, say MHp, receives a message from a
process Pj, MHp's local MSS should set Ri[j] to 1.If Pj has
taken its permanent checkpoint after sending m, Ri[j] is not
updated.

Suppose there are processes Pi and Pj running on MHs,
MHi and MHj with dependency vectors Ri and Rj. The
dependency vectors of MHs, MHi and MHj are maintained
by their local MSSs, MSSi and MSSj. Process Pi running on
MHi sends message m to process Pj running on MHj. The
message is first sent to MSSi (local MSS of MHi). MSSi
maintains the dependency vector Ri of MHi. MSSi appends
Ri with message m and sends it to MSSj (local MSS of
MHj). MSSj maintains the dependency vector Rj of MHj.
MSSj replaces Rj with bitwise logical OR of dependency
vectors Ri and Rj and sends m to Pj.

In Figure 1, there are five processes P1, P2, P3, P4, P5

160 Inter. J. Acad. Res. Educ. Rev.

 Figure 1. Maintenance of Dependency Vectors

with dependency vectors R1, R2, R3, R4, R5 initialized to
00001, 00010, 00100, 01000, and 10000 respectively.
Initially, every process depends upon itself. Now process
P1 sends m to P2. P1 appends R1 with m. P2 replaces R2
with the bitwise logical OR of R1(00001) and R2(00010),
which comes out to be (00011). Now P2 sends m2 to P3
and appends R2 (00011) with m2. Before receiving m2, the
value of R3 at P3 was 00100. After receiving m2, P3
replaces R3 with the bitwise logical OR of R2 (00011) and
R3 (00100) and R3 becomes (00111). Now P4 sends m3
along with R4 (01000) to P5. After receiving m3, R5 becomes
(11000).In this case, if P3 starts checkpointing at t1, it will
compute the tentative minimum set equivalent to
R3(00111), which comes out to be {P1, P2, P3}. In this
way, partial transitive dependencies are captured during
normal computations.

In coordinated checkpointing, if a single process fails to
take its checkpoint; all the checkpointing effort goes waste,
because, each process has to abort its tentative checkpoint
[28, 62, 72, 77, 90, 92]. Furthermore, in order to take the
tentative checkpoint, an MH needs to transfer large
checkpoint data to its local MSS over wireless channels.
Hence, the loss of checkpointing effort may be exceedingly
high due to frequent aborts of checkpointing algorithms
especially in mobile systems. In mobile distributed
systems, there remain certain issues like: abrupt
disconnection, exhausted battery power, or failure in
wireless bandwidth. So there remains a good probability
that some MH may fail to take its checkpoint in
coordination with others. Therefore, we propose that in the
first phase, all processes in the minimum set, take ad hoc
checkpoint only. Ad hoc checkpoint is stored on the
memory of MH only. If some process fails to take its
checkpoint in the first phase, then other MHs need to abort
their ad hoc checkpoints only. The effort of taking an ad

hoc checkpoint is negligible as compared to the tentative
one. In other protocols [3, 4], all concerned processes
need to abort their tentative checkpoints in this situation.
Hence the loss of checkpointing effort in case of an abort
of the checkpointing procedure is dramatically low in the
proposed scheme as compared to other coordinated
checkpointing schemes for mobile distributed systems [5,
6].

In this second phase, a process converts its ad hoc
checkpoint into tentative one. By using this scheme, we try
to minimize the loss of checkpointing effort in case of abort
of checkpointing algorithm in the first phase.

A non-blocking checkpointing algorithm does not require
any process to suspend its underlying computation. When
processes do not suspend their computation, it is possible
for a process to receive a computation message from
another process, which is already running in a new
checkpointing interval. If this situation is not properly dealt
with, it may result in an inconsistency. During the
checkpointing procedure, a process Pi may receive m from
Pj such that Pj has taken its checkpoint for the current
initiation whereas Pi has not. Suppose, Pi processes m,
and it receives checkpoint request later on, and then it
takes its checkpoint. In that case, m will become orphan in
the recorded global state. We propose that only those
messages, which can become orphan, should be buffered
at the sender’s end. When a process takes its ad hoc
checkpoint, it is not allowed to send any message till it
receives the tentative checkpoint request. However, in this
duration, the process is allowed to perform its normal
computations and receive the messages. When a process
receives the tentative checkpoint request, it is confirmed
that every concerned process has taken its ad hoc
checkpoint. Hence, a message generated for sending by a
process after getting tentative checkpoint request cannot

P1

P2

P3

P41

P51

m.00001

m2.00011

m3.01000

t1

t2

become orphan. Hence, a process can send the buffered
messages after getting the tentative checkpoint request
from the initiator.

The Proposed Algorithm

First phase of the algorithm:

When a process, say Pi, running on an MH, say MHi,
initiates a checkpointing, it sends a checkpoint initiation
request to its local MSS, which will be the proxy MSS (if
the initiator runs on an MSS, then the MSS is the proxy
MSS). The proxy MSS maintains the dependency vector of
Pi say Ri. On the basis of Ri, the set of dependent
processes of Pi is formed, say Sminset. The proxy MSS
broadcasts ckpt (Sminset) to all MSSs. When an MSS
receive ckpt (Sminset) message, it checks, if any processes
in Sminset are in its cell. If so, the MSS sends ad hoc
checkpoint request message to them. Any process
receiving a ad hoc checkpoint request takes a ad hoc
checkpoint and sends a response to its local MSS. After an
MSS received all response messages from the processes
to which it sent ad hoc checkpoint request messages, it
sends a response to the proxy MSS. It should be noted
that in the first phase, all processes take the ad hoc
checkpoints. For a process running on a static host, ad hoc
checkpoint is equivalent to tentative checkpoint. But, for an
MH, ad hoc checkpoint is different from tentative
checkpoint. In order to take a tentative checkpoint, an MH
has to record its local state and has to transfer it to its local
MSS. But, the ad hoc checkpoint is stored on the local disk
of the MH. It should be noted that the effort of taking a ad
hoc checkpoint is very small as compared to the tentative
one. For a disconnected MH that is a member of minimum
set, the MSS that has its disconnected checkpoint,
considers its disconnected checkpoint as the required
come.

Second Phase of the Algorithm:

After the proxy MSS has received the response from every
MSS, the algorithm enters the second phase. If the proxy
MSS learns that all relevant processes have taken their ad
hoc checkpoints successfully, it asks them to convert their
ad hoc checkpoints into tentative ones and also sends the
exact minimum set along with this request. Alternatively, if
initiator MSS comes to know that some process has failed
to take its checkpoint in the first phase, it issues abort
request to all MSS. In this way the MHs need to abort only
the ad hoc checkpoints, and not the tentative ones. In this
way we try to reduce the loss of checkpointing effort in
case of abort of checkpointing algorithm in first phase.
When an MSS receives the tentative checkpoint request, it
asks all the process in the minimum set, which are also

Kothari and Kumar 161

running in itself, to convert their ad hoc checkpoints into
tentative ones. When an MSS learns that all relevant
process in its cell have taken their tentative checkpoints
successfully, it sends response to proxy MSS. If any MH
fails to transfer its checkpoint data to its local MSS, then
the failure response is sent to the proxy MSS; which in
turn, issues the abort message.

Third Phase of the Algorithm:

Finally, when the proxy MSS learns that all processes in
the minimum set have taken their tentative checkpoints
successfully, it issues commit request to all MSSs. When a
process in the minimum set gets the commit request, it
converts its tentative checkpoint into permanent one and
discards its earlier permanent checkpoint, if any.

Massage Handling During Checkpointing:

When a process takes its ad hoc checkpoint, it does not
send any massage till it receives the tentative checkpoint
request. This time duration of a process is called its
uncertainty period. Suppose, Pi sends m to Pj after taking
its ad hoc checkpoint and Pj has not taken its ad hoc
checkpoint at the time of receiving m. In this case, if Pj
takes its ad hoc checkpoint after processing m, then m will
become orphan. Therefore, we do not allow Pi to send any
massage unless and until every process in the minimum
set have taken its ad hoc checkpoint in the first phase. Pi
can send massages when it receives the tentative
checkpoint request; because, at this moment every
concerned process has taken its ad hoc checkpoint and m
cannot become orphan. The massages to be sent are
buffered at senders end. In this duration, a process is
allowed to continue its normal computations and receive
massages.

CONCLUSION

In this paper, we have proposed a minimum-process
checkpointing protocol for non-deterministic mobile
distributed systems, where no useless checkpoints are
taken and an effort has been made to minimize the
blocking of processes. We try to reduce the checkpointing
time and blocking time of processes by limiting
checkpointing tree which may be formed in other
algorithms [28, 37]. We captured the transitive
dependencies during the normal execution by
piggybacking dependency vectors onto computation
messages. The Z-dependencies are well taken care of in
this protocol. We also try to reduce the loss of
checkpointing effort when any process fails to take its
checkpoint in coordination with others.

162 Inter. J. Acad. Res. Educ. Rev.

REFERENCES

[1] Chandy K.M. and Lamport L., “Distributed
snapshots : Determining Global State of Distribited
Systems, “ ACM Transaction on Computing Systems, vol.,
3 No. 1, pp 63-75, February, 1985
[2] Koo R. and Tueg S., “Checkpointing and Rollback
recovery for Distributed Systems”, IEEE Trans. On
Software Engineering, Vol. 13 no. 1, pp 23-31, January
1987.
[3] Elonzahy E.N., Alvisi L., Wang Y.M. and Johnson
D.B., “A survey of Rollback-Recovery protocols in
Message-Passing Systems”, ACM Computing surveys, vol.
34 no. 3, pp 375-408, 2002.
[4] L. Alvisi,“ Understanding the Message Logging
Paradigm for Masking Process Crashes,“ Ph.D. Thesis,
Cornell Univ., Dept. of Computer Science, Jan. 1996.
Available as Technical Report TR-96-1577.
[5] Lalit Kumar P. Kumar “A synchronous
ckeckpointing protocol for mobile distributed systems:
probabilistic approach” Int Journal of information and
computer security 2007.
[6] Cao, M.Singhal, “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing Systems”,
IEEE Transactions on Parallel and Distributed system,
vol.12, Issue 2, Feb., 2001, pages: 157-172, ISSN: 1045-
9219.
[7] Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers,”
Proceedings of the 3

rd
 International Conference on Parallel

and Distributed Information Systems, pp. 73-80,
September 1994.

[8] M. Singhal and N. Shivaratri, Advanced Concepts
in Operating Systems, New York, McGraw Hill, 1994.
[9] 9. Cao G. and Singhal M., “On coordinated
checkpointing in Distributed Systems”, IEEE Transactions
on Parallel and Distributed Systems, vol. 9, no.12, pp.
1213-1225, Dec 1998.
[10] 10. Cao G. and Singhal M., “On the Impossibility
of Min-process Non-blocking Checkpointing and an
Efficient Checkpointing Algorithm for Mobile Computing
Systems,” Proceedings of International Conference on
Parallel Processing, pp. 37-44, August 1998.

